Skip to main content

Biogenesis and Structure of Polyhydroxyalkanoate Granules

  • Chapter
Inclusions in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 1))

Abstract

A large variety of prokaryotes are capable of accumulating polyhydroxyalkanoates (PHAs) as water-insoluble inclusions in the cytoplasm, and are referred to as PHA granules. Generally, PHAs represent storage compounds for carbon and energy, and they are synthesized under unbalanced growth conditions, i.e., when the carbon source is available in excess and when another nutrient is limited at the same time. In this case, further microbial growth is prevented, and PHAs are accumulated in the cytoplasm of the cells. These PHAs may possess molecular masses of up to several million daltons, and the polyester might represent the major cell constituent, contributing up to 90% or even more of the cellular dry weight. At the beginning of this chapter a brief overview about the PHA synthase and the different metabolic pathways occurring in prokaryotes will be given. The main topic focuses on the biogenesis of PHA granules and the chemical and physical properties of PHA granules produced by bacteria. The function of granule-associated proteins during the biogenesis and mobilization of PHA granules will also be discussed in detail. The chapter will be completed with an overview about applications of PHA granules as surface coatings and as nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Kobayashi T, Saito T (2005) Properties of a novel intracellular poly(3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J Bacteriol 187:6982–6990

    Article  PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Asrar J, Gruys KJ (2002) Biodegradable polymer (Biopol®) In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 4. Polyesters III—applications and commercial products. Wiley, Weinheim, pp 53–90

    Google Scholar 

  • Banki MR, Gerngross TU, Wood DW (2005) Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 14:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Boatman ES (1964) Observations on the fine structure of spheroplasts of Rhodospirillum rubrum. J Cell Biol 20:297–311

    Article  PubMed  CAS  Google Scholar 

  • Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the β-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Cox MK (1992) In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable polymers and plastics. Royal Society of Chemistry, Cambridge, p 95

    Google Scholar 

  • De Koning GJM, Maxwell IA (1993) Biosynthesis of poly-(R)-3-hydroxyalkanoate: an emulsion polymerization. J Environ Polym Degrad 1:223–226

    Article  Google Scholar 

  • Dennis D, Liebig C, Holley T, Thomas KS, Khosla A, Wilson D, Augustine B (2003) Preliminary analysis of polyhydroxyalkanoate inclusions using atomic force microscopy. FEMS Microbiol Lett 226:113–119

    Article  PubMed  CAS  Google Scholar 

  • De Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    PubMed  Google Scholar 

  • Doi Y, Abe C (1990) Biosynthesis and characterization of a new bacterial copolyester of hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23:3705–3707

    Article  CAS  Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate and 5-hydroxyvalerate from chlorpentanoic and pentanoic acids. Makromol Chem Rapid Commun 8:631–635

    Article  CAS  Google Scholar 

  • Doi Y, Segawa A, Nakamura S, Kunioka MT (1990) Production of biodegradable copolyesters by Alcaligenes eutrophus. In: Dawes EA (ed) New biosynthetic biodegradable polymers of industrial interest from microorganisms. Kluwer, Dordrecht, pp 37–48

    Google Scholar 

  • Fischer H, Erdmann S, Holler E (1989) An unusual polyanion from Physarium polycephalum that inhibits homologous DNA polymerase alpha in vitro. Biochemistry 28:5219–5226

    Article  PubMed  CAS  Google Scholar 

  • Fukui T, Doi A (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830

    PubMed  CAS  Google Scholar 

  • Fuller RC, O’Donnel JP, Saulnier J, Redlinger TE, Foster J, Lenz JW (1992) The supramolecular architecture of the polyhydroxyalkanoate inclusions in Pseudomonas oleovorans. FEMS Microbiol Rev 103:279–288

    Article  CAS  Google Scholar 

  • Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP (1993) Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of the of PHB granules. J Bacteriol 175:5289–5293

    PubMed  CAS  Google Scholar 

  • Gottschalk G (1964a) Die Biosynthese der Poly-β-Hydroxybuttersäure durch Knallgasbakterien. I. Ermittlung der 14C-Verteilung in Poly-β-Hydroxybuttersäure. Arch Mikrobiol 47:225–229

    Google Scholar 

  • Gottschalk G (1964b) Die Biosynthese der Poly-β-Hydroxybuttersäure durch Knallgasbakterien. II. Verwertung organischer Säuren. Arch Mikrobiol 47:230–235

    Article  PubMed  CAS  Google Scholar 

  • Griebel RJ, Merrick JM (1971) Metabolism of poly-β-hydroxybutyrate: effect of mild alkaline extraction on native poly-β-hydroxybutyrate granules. J Bacteriol 108:782–789

    PubMed  CAS  Google Scholar 

  • Griebel RJ, Smith Z, Merrick JM (1968) Metabolism of poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7:3676–3681

    Article  PubMed  CAS  Google Scholar 

  • Handrick R, Technow U, Reichart T, Reinhardt S, Sander T, Jendrossek D (2004a) The activator of the Rhodospirillum rubrum PHB depolymerase is a polypeptide that is extremely resistant to high temperature (121 °C) and other physical or chemical stresses. FEMS Microbiol Lett 230:265–274

    Article  PubMed  CAS  Google Scholar 

  • Handrick R, Reinhardt S, Schultheiss D, Reichart T, Schüler D, Jendrossek V, Jendrossek D (2004b) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin). J Bacteriol 186:2466–2475

    Article  PubMed  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Chu L, Dawes AE (1988a) Characterization of two 3-ketothiolases possesing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:91–96

    Article  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Chu L, Dawes AE (1988b) The role of NADH-and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264

    Article  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Dawes AE (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6

    Article  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 56:3354–3359

    PubMed  CAS  Google Scholar 

  • Hocking PJ, Marchessault RH (1994) Biopolyesters. In: Griggin GJL (ed) Chemistry and technology of biodegradable polymers. Chapman and Hall, London, pp 48–96

    Google Scholar 

  • Hoffmann N, Steinbüchel A, Rehm BHA (2000) Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol 54:665–670

    Article  PubMed  CAS  Google Scholar 

  • Holmes PA, Wright LF, Collins SH (1981) Betahydroxybutyrate polymers. Eur Patent Appl 0052459

    Google Scholar 

  • Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    PubMed  CAS  Google Scholar 

  • Huijberts GN, de Rijk TC, de Waard P, Eggink G (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol 176:1661–1666

    PubMed  CAS  Google Scholar 

  • Huisman GW, Wonink E, Meima R, Katzemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198

    PubMed  CAS  Google Scholar 

  • Jaeger KE, Steinbüchel A, Jendrossek D (1995) Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(β-hydroxyalkanoates). Appl Environ Microbiol 61:3113–3118

    PubMed  CAS  Google Scholar 

  • Jendrossek D (2002) Extracellular polyhydroxyalkanoate depolymeraes: the key enzymes of PHA degradation. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3B. Polyesters II—properties and chemical synthesis. Wiley, Weinheim, pp 41–84

    Google Scholar 

  • Jendrossek D (2005) Fluorescence microscopical investigation of poly(3-hydroxybutyrate) granule formation in bacteria. Biomacromolecules 6:598–603

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Ann Rev Micobiol 56:403–432

    Article  CAS  Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463

    Article  PubMed  CAS  Google Scholar 

  • Jossek R, Steinbüchel A (1998) In vitro synthesis of poly(3-hydroxybutyric acid) by using an enzymatic coenzyme A recycling system. FEMS Microbiol Lett 168:319–324

    Article  PubMed  CAS  Google Scholar 

  • Jurasek L, Marchessault RH (2002) The role of phasins in the morphogenesis of poly(3-hydroxybutyrate) granules. Biomacromolecules 3:256–261

    Article  PubMed  CAS  Google Scholar 

  • Jurasek L, Marchessault RH (2004) Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation. Appl Microbiol Biotechnol 64:611–617

    Article  PubMed  CAS  Google Scholar 

  • Jurasek L, Nobes GAR, Marchessault RH (2001) Computer simulation of in vitro formation of PHB granules: particulate polymerization. Macromol Biosci 1:258–265

    Article  CAS  Google Scholar 

  • Kim do Y, Lütke-Eversloh T, Elbanna K, Thakor N, Steinbüchel A (2005) Poly(3-mercaptopropionate): a nonbiodegradable biopolymer? Biomacromolecules 6:897–901

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1991) Preparation and characterization of poly(β-hydroxalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 24:2324–2329

    Google Scholar 

  • Kobayashi T, Uchino K, Abe T, Yamazaki Y, Saito T (2005) Novel intracellular 3-hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16. J Bacteriol 187:5129–5135

    Article  PubMed  CAS  Google Scholar 

  • Korsatko VW, Wabnegg B, Tillian HM, Egger G, Pfranger R, Walser V (1984) Poly-D-(-)-3-hydroxybutyric acid — a biodegradable carrier for long term medication dosage. Studies on compatibility of poly-D-(-)-3hydroxybutyric acid implantation tablets in tissue culture and animals. Pharm Ind 46:952–954

    CAS  Google Scholar 

  • Kunioka M, Nakamura Y, Doi Y (1988) New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polym Commun 29:174–176

    CAS  Google Scholar 

  • Lee SY, Park SJ (2002) Biosynthesis and production of SCL-PHAs. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3A. Polyesters I—biological systems and biotechnological production. Wiley, Weinheim, p 263–290

    Google Scholar 

  • Lemoigne M (1926) Produits de deshydration et de polymerisation de lácide β-oxybutyrique. Bull Soc Chim Biol 8:770–782

    CAS  Google Scholar 

  • Lenz RW, Kim YB, Fuller RC (1992) Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol Rev 103:207–214

    Article  CAS  Google Scholar 

  • Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule associated proteins relevant for poly(hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 78:227–232

    Article  PubMed  CAS  Google Scholar 

  • Liebergesell M, Sonomoto K, Madkour M, Mayer F, Steinbüchel A (1994) Purification and characterization of the poly(hydroxyalcanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur J Biochem 226:71–80

    Article  PubMed  CAS  Google Scholar 

  • Liu SJ, Steinbüchel A (2000) Exploitation of butyrate kinase and thephosphotransbutyrase from Clostridium acetobutylicum for the in vitro biosynthesis of poly(hydroxyalkanoic acid). Appl Microbiol Biotechnol 53:545–552

    Article  PubMed  CAS  Google Scholar 

  • Lundgren DG, Alper R, Schneitman C, Marchessault RH (1964) Characterization of poly-β-hydroxybutyrate extracted from different bacteria. J Bacteriol 89:245–251

    Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001) Bioynthesis of a new class of biopolymer: Bacterial synthesis of a sulfur containing polymer with thioester linkages. Microbiology 147:11–19

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bögershausen A, Kalwei M, Eckert H, Reichelt R, Liu SJ, Steinbüchel A (2002) Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat Mater 1:236–240

    Article  PubMed  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed  CAS  Google Scholar 

  • Maehara A, Doi Y, Nishiyama T, Takagi Y, Ueda S, Nakano H, Yamane T (2001) PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro. FEMS Microbiol Lett 200:9–15

    Article  PubMed  CAS  Google Scholar 

  • Mayer F, Hoppert M (1997) Determination of the thickness of a boundary layer surrounding bacterial PHA inclusion bodies, and implications for models describing the molecular architecture of this layer. J Basic Microbiol 37:45–52

    Google Scholar 

  • McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243

    Article  PubMed  CAS  Google Scholar 

  • Moldes C, Garcia P, Garcia JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz GJ, Merrik JM (1969) Metabolism of poly-β-hydroxybutyrate. Enzymatic synthesis of D-(-)-β-hydroxybutyryl coenzyme A by an enoyl hydratase from Rhodospirillum rubrum. Biochemistry 8:2748–2755

    Article  PubMed  CAS  Google Scholar 

  • Mukai K, Doi Y, Sema Y, Tomita K (1993) Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett 15:601–604

    Article  CAS  Google Scholar 

  • Müller HM, Seebach D (1993) Poly(hydroxyfettsäureester), eine fünfte Klasse von physiologisch bedeutsamen organischen Biopolymeren? Angew Chem 105:483–509

    Google Scholar 

  • Nobes GAR, Jurasek L, Marchessault RH, Martin DP, Putaux JL, Chanzy H (2000) Growth and kinetics of in vitro poly((R)-(-)-3-hydroxybutyrate) granules interpreted as particulate polymerization with coalescence. Macromol Rapid Commun 21:77–84

    Article  CAS  Google Scholar 

  • Oeding V, Schlegel HG (1973) β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem J 134:826–837

    Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303

    PubMed  CAS  Google Scholar 

  • Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A (1995) Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol 177:2513–2523

    PubMed  Google Scholar 

  • Poirier Y, Gruys KJ (2002) Production of polyhydroxyalkanoates in transgenic plants. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3A. Polyesters I—biological systems and biotechnological production. Wiley, Weinheim, pp 401–435

    Google Scholar 

  • Pötter M, Steinbüchel A (2005) Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560

    Article  PubMed  CAS  Google Scholar 

  • Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426

    PubMed  Google Scholar 

  • Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150:2301–2311

    Article  PubMed  CAS  Google Scholar 

  • Pötter M, Müller H, Steinbüchel A (2005) Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology 151:825–833

    Article  PubMed  CAS  Google Scholar 

  • Pries A, Priefert H, Krüger N, Steinbüchel A (1991) Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly(β-hydroxybutyric acid)-leaky phenotype which exhibit homolohy to ptsH and ptsI of Escherichia coli. J Bacteriol 173:5843–5853

    PubMed  CAS  Google Scholar 

  • Prieto MA, Buhler B, Jung K, Witholt B, Kessler B (1999) PhaF, a polyhydroxyalkanoategranule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868

    PubMed  CAS  Google Scholar 

  • Rehm BHA, Steinbüchel A (2002) PHA synthases: the key enzymes of PHA biosynthesis. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3A. Polyesters I—biological systems and biotechnological production. Wiley, Weinheim, pp 173–216

    Google Scholar 

  • Rehm BHA, Krüger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem 273:24044–24051

    Article  PubMed  CAS  Google Scholar 

  • Reusch RN (2002) Non-storage poly-(R)-3-hydroxyalkanoates (complexed PHAs) in prokaryotes and eukaryotes. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3A. Polyesters I—biological systems and biotechnological production. Wiley, Weinheim, pp 123–172

    Google Scholar 

  • Saegusa H, Shiraki M, Kanai C, Saito T (2001) Cloning of an intracellular poly[D-(-)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. J Bacteriol 183:94–100

    Article  PubMed  CAS  Google Scholar 

  • Saegusa H, Shiraki M, Saito T (2002) Cloning of an intracellular D(-)-3-hydroxybutyrateoligomer hydrolase gene from Ralstonia eutropha H16 and identification of the active site serine residue by site-directed mutagenesis. J Biosci Bioeng 94:106–112

    Article  PubMed  CAS  Google Scholar 

  • Satoh Y, Minamoto N, Tajima K, Munekata M (2002) Polyhydroxyalkanoate synthase from Bacillus sp. INT005 is composed of PhaC and PhaR. J Biosci Bioeng 94:343–350

    Article  PubMed  CAS  Google Scholar 

  • Scandola M, Forcarete ML, Frisoni G (1998) Simple kinetic model for thr heterogeneous enzymatic hydrolysis of natural poly(3-hydroxybutyrate). Macromolecules 31:3846–3851

    Article  CAS  Google Scholar 

  • Schlegel HG, Gottschalk G, Bartha V (1961) Formation of and utilization of poly-β-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas). Nature 29:463–465

    Article  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    PubMed  CAS  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383

    Article  PubMed  CAS  Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 125:55–66

    Google Scholar 

  • Slater SC, Voigt WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436

    PubMed  CAS  Google Scholar 

  • Slater T, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987

    PubMed  CAS  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. NATO AEW: novel materials from biological sources. In: Byrom D (ed) Biomaterials. MacMillan, London, pp 123–213

    Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  Google Scholar 

  • Steinbüchel A, Schlegel HG (1989) Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(β-hydroxybutyric acid) (PHB), under conditions permissive for synthesis of PHB. Appl Microbiol Biotechnol 31:168–175

    Article  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  PubMed  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of microbial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 9:217–230

    PubMed  Google Scholar 

  • Steinbüchel A, Aerts K, Babel W, Föllner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Fürst U, Pries A, Valentin HE, Wieczorek R (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 41:94–105

    Article  PubMed  Google Scholar 

  • Stuart ES, Tehrani A, Valentin HE, Dennis D, Lenz RW, Fuller RC (1998) Protein organization on the PHA inclusion cytoplasmic boundary. J Biotechnol 64:137–144

    Article  PubMed  CAS  Google Scholar 

  • Stubbe J, Tian J (2003) Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Nat Prod Rep 20:445–457

    Article  PubMed  CAS  Google Scholar 

  • Sudesh K, Maehara A, Gan Z, Iwata T, Doi Y (2004) Direct observation of polyhydroxyalkanoate granule-associated-proteins on native granules and on poly(3-hydroxybutyrate) single crystals by atomic force microscopy. Polym Degrad Stab 83:281–287

    Article  CAS  Google Scholar 

  • Srinivasan S, Barnard GC, Gerngross TU (2002) A novel high-cell-density protein expression system based on Ralstonia eutropha. Appl Environ Microbiol 68:5925–5932

    Article  PubMed  CAS  Google Scholar 

  • Taguchi K, Taguchi S, Sudesh K, Maehara A, Tsuge T, Doi Y (2002) Metabolic pathways and engineering of PHA biosynthesis. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3A. Polyesters I—biological systems and biotechnological production. Wiley, Weinheim, pp 217–248

    Google Scholar 

  • Tian J, Sinskey AJ, Stubbe J (2005a) Kinetic studies of polyhydroxybutyrate granule formation in Wautersia eutropha H16 by transmission electron microscopy. J Bacteriol 187:3814–3824

    Article  PubMed  CAS  Google Scholar 

  • Tian J, He A, Lawrence AG, Liu P, Watson N, Sinskey AJ, Stubbe J (2005b) Analysis of transient polyhydroxybutyrate production in Wautersia eutropha H16 by quantitative Western analysis and transmission electron microscopy. J Bacteriol 187:3825–3832

    Article  PubMed  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    PubMed  CAS  Google Scholar 

  • Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizak A, Doi Y (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol Lett 184:193–208

    Article  PubMed  CAS  Google Scholar 

  • Valentin H, Schönebaum A, Steinbüchel A (1992) Identification of 4-hydroxyvaleric acid as a constituent in biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 36:507–514

    Article  CAS  Google Scholar 

  • Valentin HE, Zwingmann G, Schönebaum A, Steinbüchel A (1995) Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutropha. Eur J Biochem 227:43–60

    Article  PubMed  CAS  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed  CAS  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  PubMed  CAS  Google Scholar 

  • Weusthuis RA, Kessler B, Dielissen MPM, Witholt B, Eggink G (2002) Fermentative production of medium-chain-length poly(3-hydroxyalkanoate). In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 3A. Polyesters I—biological systems and biotechnological production. Wiley, Weinheim, pp 291–316

    Google Scholar 

  • Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177:2425–2435

    PubMed  CAS  Google Scholar 

  • Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 4. Polyesters III—applications and commercial products. Wiley, Weinheim, pp 91–127

    Google Scholar 

  • Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue I. Tissue engineering. Int J Biol Macromol 25:111–121

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Wilkinson JF (1958) The isolation and estimation of poly-β-hydroxybutyrate inclusions of Bacillus species. J Gen Microbiol 19:198–209

    PubMed  CAS  Google Scholar 

  • York GM, Junker BH, Stubbe J, Sinskey AJ (2001a) Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183:4217–4226

    Article  PubMed  CAS  Google Scholar 

  • York GM, Stubbe J, Sinskey AJ (2001b) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397

    Article  PubMed  CAS  Google Scholar 

  • York GM, Stubbe J, Sinskey AJ (2002) The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184:59–66

    Article  PubMed  CAS  Google Scholar 

  • York GM, Lupberger J, Tian JM, Lawrence AG, Stubbe J, Sinskey AJ (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185:3788–3794

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pötter, M., Steinbüchel, A. (2006). Biogenesis and Structure of Polyhydroxyalkanoate Granules. In: Shively, J.M. (eds) Inclusions in Prokaryotes. Microbiology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33774-1_5

Download citation

Publish with us

Policies and ethics