Skip to main content
Log in

Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(β-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB

  • Applied Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Mutants of Alcaligenes eutrophus, which are defective in the intracellular accumulation of poly(β-hydroxybutyric acid), PHB, were cultivated in the presence of excess carbon source after growth had ceased due to depletion of ammonium, sulphate, phosphate, potassium, magnesium, or iron. Under these conditions all mutants excreted large amounts of pyruvate into the medium. Excretion of pyruvate occurred with lactate, gluconate or fructose as carbon sources; the highest rate of pyruvate excretion (8 mmol/1 per hour) was obtained with lactate. The rate of pyruvate excretion by strain N9A-PHB-02-HB-1 on gluconate amounted to 2.5–6.3 mmol/g protein per hour depending on the depleted nutrient. The ratios of the molar rates for the utilization of the substrates versus those for the excretion of pyruvate were 1.9, 1.0 or 0.7, respectively. Wild-type strains did not excrete even traces of pyruvate, but accumulated PHB. Depending on the limiting nutrient, strain N9A accumulated PHB at a rate of 0.21–0.49 g/g protein per hour. On a molar basis (β-hydroxybutyrate monomers versus pyruvate) the ratios for the rates for accumulation of PHB in the wild-type and for excretion of pyruvate in PHB-negative mutants were 0.9–1.4. The fermentation enzymes alcohol dehydrogenase and lactate dehydrogenase were not synthesized in cells starved of a nutrient; they were only detectable in cells cultivated under conditions of restricted oxygen supply. The latter conditions caused accumulation of PHB in the wild-type and excretion of pyruvate by the PHB-negative mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreeva RI, Vysotskii ES, Ridicheva EK, Shchbakova GY (1981) Production of pyruvic acid by the luminescent bacterium Photobacterium mandapamensis. Microbiology 50:435–445

    Google Scholar 

  • Bahl H, Andersch W, Braun K, Gottschalk G (1982) Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Eur J Appl Microbiol Biotechnol 14:17–20

    Google Scholar 

  • Bergmeyer HU, Bernt E (1974) α-Ketoglutarat. UV-spectroskopische Bestimmung. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn. Verlag Chemie, Weinheim, pp 1624–1627

    Google Scholar 

  • Blackkolb F, Schlegel HG (1968) Regulation der Glucose-6-phosphat dehydrogenase aus Hydrogenomonas H16 durch ATP und NADH2. Arch Mikrobiol 63:177–196

    Google Scholar 

  • Bohlken G (1969) Zur Speicherung von Reservestoffen in Bacillus megaterium. II. Untersuchungen an Poly-β-hydroxybuttersäure-freien Mutanten. Zentralbl Bakteriol Parasitenkd Abt II 123:16–29

    Google Scholar 

  • Bormann EJ (1966) Stoffwechselregulation und Brenztraubensäurestauung bei Antibiotika-bildenden Streptomyceten. Arch Mikrobiol 53:218–230

    Google Scholar 

  • Bormann EJ, Hermann R (1968) Zur Pyruvat- und α-Ketoglutaratausscheidung durch Streptomyces rimosus. Arch Mikrobiol 63:41–52

    Google Scholar 

  • Bowien B, Schlegel HG (1972) Isolierung und Charakterisierung katabolischer Defektmutanten von Hydrogenomonas eutropha Stamm H16. II. Mutanten mit einem Defekt in der 2-Keto-3-desoxy-6-phosphogluconat-Aldolase. Arch Mikrobiol 87:221–234

    Google Scholar 

  • Bowien B, Cook AM, Schlegel HG (1974) Evidence for the in vivo regulation of glucose-6-phosphate dehydrogenase activity in Hydrogenomonas eutropha H16 from measurements of the intracellular concentrations of metabolic intermediates. Arch Microbiol 97:273–281

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Codd GA, Bowien B, Schlegel HG (1976) Glycollate production and excretion by Alcaligenes eutrophus. Arch Microbiol 110:167–171

    Google Scholar 

  • Coleman RJ, Nord FF (1954) Application of mixed substrates to the study of pyruvic acid formation by Fusarium lini Bolley. Arch Mikrobiol 20:230–234

    Google Scholar 

  • Cook AM, Schlegel HG (1978) Metabolite concentrations in Alcaligenes eutrophus H16 and a mutant defective in poly-β-hydroxybutyrate synthesis. Arch Microbiol 119:231–235

    Google Scholar 

  • Cook AM, Urban E, Schlegel HG (1976) Measuring the concentrations of metabolites in bacteria. Anal Biochem 72:191–201

    Google Scholar 

  • Czok R, Lamprecht W (1974) Pyruvat, Phosphoenolpyruvat und d-Glycerat-2-phosphat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn. Verlag Chemie, Weinheim, pp 1491–1496

    Google Scholar 

  • Dawes EA (1986) Microbial energetics, 1st edn. Blackie, Glasgow

    Google Scholar 

  • Dawes EA, Senior P (1973) Energy reserve polymers in microorganisms. Arch Microbiol Physiol 14:203–266

    Google Scholar 

  • Dische Z (1962) Colour reactions of hexoses. In: Whistler RL, Wolfram ML (eds) Methods in carbohydrate chemistry, vol. 1. Academic Press, New York, pp 488–494

    Google Scholar 

  • Dorn M (1976) Vergärung von Fumarat und Malatdurch Clostridium formicoaceticum. Ph. D. Thesis. University of Göttingen

  • Doskocil J, Sikiia B, Kasparowa J, Doskocilowa D, Zajicek J (1958) Development of culture of Str. rimosus in submerged fermentation. J Gen Microbiol 18:302–313

    Google Scholar 

  • Eagon RG, Cho HW (1965) Major products of glucose dissimlation by Pseudomonas natriegens. J Bacteriol 89:1209–1211

    Google Scholar 

  • Eschenbruch R, Dittrich HH (1970) Die Acetoinbildung von Lactobacillus plantarum in Abhängigkeit von Thiamin, Liponsäure, l-Valin und l-Isoleucin. Arch Mikrobiol 70:303–312

    Google Scholar 

  • Gawehn K, Bergmeyer HU (1974) d(−)-Lactat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn. Verlag Chemie, Weinheim, pp 1538–1541

    Google Scholar 

  • Gutmann I, Wahlefeld AW (1974) l(+)-Lactat. Bestimmung mit Lactat Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn. Verlag Chemie, Weinheim, pp 1510–1514

    Google Scholar 

  • Hall AN (1963) Miscellaneous oxidative transformations. In: Rainbow C, Rose AH (eds) Biochemistry of industrial micro-organisms. Academic Press, London, pp 607–628

    Google Scholar 

  • Hastings JW, Nealson KH (1977) Bacterial luminescence. Ann Rev Microbiol 31:549–595

    Google Scholar 

  • Haywood GW, Anderson AJ, Chu L, Dawes EA (1988a) Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organisms Alcaligenes eutrophus. FEMS Microbiol Lett 52:91–96

    Google Scholar 

  • Haywood GW, Anderson A, Chu L, Dawes EA (1988b) The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264

    Google Scholar 

  • Izumi Y, Matsumura Y, Tani Y, Yamada H (1982) Pyruvic acid production from 1,2-propandiol by thiamine requiring Acinetobacter sp 80-M. Agric Biol Chem 46:2673–2678

    Google Scholar 

  • Jüttner RR, Lafferty RM, Knackmuss HJ (1975) A simple method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol 1:233–237

    Google Scholar 

  • Kodaki I, Murakami H, Taguchi M, Izui K, Katsuki H (1981) Stringent control of intermediatry metabolism in Escherichia coli: pyruvate excretion by cells grown on succinate. J Biochem 90:1437–1444

    Google Scholar 

  • Lemoigne M (1926) Produits de deshydration et de polymerisation de l'acide β-oxybutyrique. Bull Soc Chim Biol 8:770–782

    Google Scholar 

  • Möllering H, Bergmeyer HU (1974) d-Gluconat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn. Verlag Chemie, Weinheim, pp 1205–1209

    Google Scholar 

  • Morinaga Y, Yamanaka S, Ishizaki A, Hiros Y (1978) Growth characteristics and cell composition of Alcaligenes eutrophus in chemostat culture. Agric Biol Chem 42:439–444

    Google Scholar 

  • Moriguchi M (1982) Fermentative production of pyruvic acid from citrus peel extract by Debaryomyces coudertii. Agric Biol Chem 46:955–961

    Google Scholar 

  • Nataka HM (1963) Effect of pH on intermediates produced during growth and sporulation of Bacillus cereus. J Bacteriol 86:577–581

    Google Scholar 

  • O'Brien RW (1975) Induction of citrate lyase in Enterobacter cloacaae grown under aerated conditions and its effect on citrate metabolism. J Bacteriol 124:1084–1088

    Google Scholar 

  • Payne WJ, Eagon RG, Williams AK (1960) Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie Leeuwenhoek J Microb Serol 27:121–128

    Google Scholar 

  • Rehm HJ (1980) Industrielle Mikrobiologie. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Repaske R, Repaske AC (1976) Quantitative requirements for exponential growth of Alcaligenes eutrophus. J Appl Environ Microbiol 32:585–591

    Google Scholar 

  • Ruby EG, Nealson KH (1977) Pyruvate production and excretion by the luminous marine bacteria. Appl Environ Microbiol 34:164–169

    Google Scholar 

  • Ruhr EM (1977) Regulation der Biosynthese von Poly-β-hydroxybuttersäure in Alcaligenes eutrophus H16. Ph. D. Thesis, University of Göttingen

  • Ruhr EM, Schlegel HG (1975) Synthesis of poly-β-hydroxybutyrate in vivo and kinetics of β-ketothiolase in vitro in Alcaligenes eutrophus H16. Biochem Soc Trans 3:1093–1094

    Google Scholar 

  • Schlegel HG, Steinbüchel A (1981) Die relative Belüftungstrate (RRR), ein neuer Belüftungsparameter. In: Lafferty RM (ed) Fermentation. Pringer, Berlin, Heidelberg, New York, pp 11–26

    Google Scholar 

  • Schlegel HG, Vollbrecht D (1980) Formation of the dehydrogenases for lactate, ethanol and butanediol in the strictly aerobic bacterium Alcaligenes eutrophus. J Gen Microbiol 117:475–481

    Google Scholar 

  • Schlegel HG, Gottschalk G, Bartha R von (1961) Formation and utilization of poly-β-hydrobutyric acid by Knallgas-bacteria (Hydrogenomonas). Nature 191:463–465

    Google Scholar 

  • Schlegel HG, Lafferty R, Krauss I (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Microbiol 71:283–294

    Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for the synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    Google Scholar 

  • Schuster E, Schlegel HG (1967) Chemolithotrophes Wachstum von Hydrogenomonas H16 im Chemostaten mit elektrolytischer Knallgaserzeugung. Arch Mikrobiol 58:380–409

    Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238

    Google Scholar 

  • Semor PJ, Beech GA, Ritchie GF, Dawes EA (1972) The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128:1193–1201

    Google Scholar 

  • Sharma S, Tauro P (1987) Control of ethanol production by yeast: pyruvate accumulation in slow ethanol producing Saccharomyces cerevisiae. Biotechnol Lett 9:585–586

    Google Scholar 

  • Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthesis pathway. J Bacteriol 170:4431–4436

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1983) NAD-linked l(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 1. Purification and properties. Eur J Biochem 130:321–328

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1984) A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem 141:555–564

    Google Scholar 

  • Steinbüchel A, Kuhn M, Niedrig M, Schlegel HG (1983) Fermentation enzymes in strictly aerobic bacteria: comparative studies on strains of the genus Alcaligenes and on Nocardia opaca and Xanthobacter autotrophicus. J Gen Microbiol 129:2825–2835

    Google Scholar 

  • Vollbrecht D, El Nawawy MA (1980) Restricted oxygen supply and excretion of metabolites. I. Pseudomonas spec. and Paracoccus denitrificans. Eur J Appl Microbiol Biotechnol 8:135–143

    Google Scholar 

  • Vollbrecht D, Schlegel HG (1979) Excretion of metabolites by hydrogen bacteria. III. d(−)-3-Hydroxybutaneoate. Eur J Appl Microbiol Biotechnol 7:259–266

    Google Scholar 

  • Vollbrecht D, El Nawawy MA, Schlegel HG (1978) Excretion of metabolites by hydrogen bacteria. I. Autotrophic and heterotrophic fermentations. Eur J Appl Microbiol Biotechnol 6:145–155

    Google Scholar 

  • Vollbrecht D, Schlegel HG, Stoschek G, Janczikowski A (1979) Excretion of metabolites by hydrogen bacteria. IV. Respiration rate-dependent formation of primary metabolites and of poly-3-hydroxybutanoate. Eur J Appl Microbiol Biotechnol 7:267–276

    Google Scholar 

  • Ward AC, Rowley BI, Dawes EA (1977) Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in ammonium grown Azotobacter beijerinckii. J Gen Microbiol 102:61–68

    Google Scholar 

  • Whittenburg R (1978) Biochemical characteristics of Streptococcus species. In: Skinner FA, Quesnel LB (eds.) Streptococci. Academic Press, London, pp 51–69

    Google Scholar 

  • Williamson JR, Mellanby J (1974) d(−)-3-Hydroxybutyrat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn, Verlag Chemie, Weinheim, pp 1883–1886

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbüchel, A., Schlegel, H.G. Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(β-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB. Appl Microbiol Biotechnol 31, 168–175 (1989). https://doi.org/10.1007/BF00262457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00262457

Keywords

Navigation