Skip to main content

Scanning Probe Microscopy — Principle of Operation, Instrumentation, and Probes

  • Chapter
Nanotribology and Nanomechanics

Summary

Since the introduction of the STM in 1981 and AFMin 1985, many variations of probe based microscopies, referred to as SPMs, have been developed. While the pure imaging capabilities of SPM techniques is dominated by the application of these methods at their early development stages, the physics of probe—sample interactions and the quantitative analyses of tribological, electronic, magnetic, biological, and chemical surfaces have now become of increasing interest. Nanoscale science and technology are strongly driven by SPMs which allow investigation and manipulation of surfaces down to the atomic scale. With growing understanding of the underlying interaction mechanisms, SPMs have found applications in many fields outside basic research fields. In addition, various derivatives of all these methods have been developed for special applications, some of them targeted far beyond microscopy.

This chapter presents an overview of STM and AFM and various probes (tips) used in these instruments, followed by details on AFM instrumentation and analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49:57–61, 1982.

    Article  Google Scholar 

  2. G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett., 56:930–933, 1986.

    Article  Google Scholar 

  3. G. Binnig, Ch. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate. Atomic resolution with atomic force microscope. Europhys. Lett., 3:1281–1286, 1987.

    CAS  Google Scholar 

  4. B. Bhushan. Handbook of Micro/Nanotribology. CRC, 2nd edition, 1999.

    Google Scholar 

  5. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett., 59:1942–1945, 1987.

    Article  CAS  Google Scholar 

  6. R. Erlandsson, G. M. McClelland, C. M. Mate, and S. Chiang. Atomic force microscopy using optical interferometry. J. Vac. Sci. Technol. A, 6:266–270, 1988.

    Article  CAS  Google Scholar 

  7. O. Marti, J. Colchero, and J. Mlynek. Combined scanning force and friction microscopy of mica. Nanotechnol., 1:141–144, 1990.

    Article  Google Scholar 

  8. G. Meyer and N. M. Amer. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett., 57:2089–2091, 1990.

    Article  CAS  Google Scholar 

  9. B. Bhushan and J. Ruan. Atomic-scale friction measurements using friction force microscopy: Part ii — application to magnetic media. ASME J. Tribol., 116:389–396, 1994.

    CAS  Google Scholar 

  10. B. Bhushan, V. N. Koinkar, and J. Ruan. Microtribology of magnetic media. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 208:17–29, 1994.

    Google Scholar 

  11. B. Bhushan, J. N. Israelachvili, and U. Landman. Nanotribology: Friction, wear, and lubrication at the atomic scale. Nature, 374:607–616, 1995.

    Article  CAS  Google Scholar 

  12. S. Fujisawa, M. Ohta, T. Konishi, Y. Sugawara, and S. Morita. Difference between the forces measured by an optical lever deflection and by an optical interferometer in an atomic force microscope. Rev. Sci. Instrum., 65:644–647, 1994.

    Article  Google Scholar 

  13. S. Fujisawa, E. Kishi, Y. Sugawara, and S. Morita. Fluctuation in 2-dimensional stickslip phenomenon observed with 2-dimensional frictional force microscope. Jpn. J. Appl. Phys., 33:3752–3755, 1994.

    Article  CAS  Google Scholar 

  14. S. Grafstrom, J. Ackermann, T. Hagen, R. Neumann, and O. Probst. Analysis of lateral force effects on the topography in scanning force microscopy. J. Vac. Sci. Technol. B, 12:1559–1564, 1994.

    Article  Google Scholar 

  15. R. M. Overney, H. Takano, M. Fujihira, W. Paulus, and H. Ringsdorf. Anisotropy in friction and molecular stick-slip motion. Phys. Rev. Lett., 72:3546–3549, 1994.

    Article  CAS  Google Scholar 

  16. R. J. Warmack, X. Y. Zheng, T. Thundat, and D. P. Allison. Friction effects in the deflection of atomic force microscope cantilevers. Rev. Sci. Instrum., 65:394–399, 1994.

    Article  Google Scholar 

  17. N. A. Burnham, D. D. Domiguez, R. L. Mowery, and R. J. Colton. Probing the surface forces of monolayer films with an atomic force microscope. Phys. Rev. Lett., 64:1931–1934, 1990.

    Article  CAS  Google Scholar 

  18. N. A. Burham, R. J. Colton, and H. M. Pollock. Interpretation issues in force microscopy. J. Vac. Sci. Technol. A, 9:2548–2556, 1991.

    Article  Google Scholar 

  19. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber. Functional group imaging by chemical force microscopy. Science, 265:2071–2074, 1994.

    CAS  Google Scholar 

  20. V. N. Koinkar and B. Bhushan. Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy. J. Vac. Sci. Technol. A, 14:2378–2391, 1996.

    Article  CAS  Google Scholar 

  21. V. Scherer, B. Bhushan, U. Rabe, and W. Arnold. Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies. IEEE Trans. Mag., 33:4077–4079, 1997.

    Article  CAS  Google Scholar 

  22. V. Scherer, W. Arnold, and B. Bhushan. Lateral force microscopy using acoustic friction force microscopy. Surf. Interface Anal., 27:578–587, 1999.

    Article  CAS  Google Scholar 

  23. B. Bhushan and S. Sundararajan. Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater., 46:3793–3804, 1998.

    Article  CAS  Google Scholar 

  24. U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, and O. Marti. Pulse force mode: A new method for the investigation of surface properties. Surf. Interface Anal., 27:336–340, 1999.

    Article  CAS  Google Scholar 

  25. B. Bhushan and C. Dandavate. Thin-film friction and adhesion studies using atomic force microscopy. J. Appl. Phys., 87:1201–1210, 2000.

    Article  CAS  Google Scholar 

  26. B. Bhushan. Micro/Nanotribology and its Applications. Kluwer, 1997.

    Google Scholar 

  27. B. Bhushan. Principles and Applications of Tribology. Wiley, 1999.

    Google Scholar 

  28. B. Bhushan. Modern Tribology Handbook Vol. 1: Principles of Tribology. CRC, 2001.

    Google Scholar 

  29. B. Bhushan. Introduction to Tribology. Wiley, 2002.

    Google Scholar 

  30. M. Reinstaedtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, and W. Arnold. On the nanoscale measurement of friction using atomic force microscope cantilever torsional resonances. Appl. Phys. Lett., 82:2604–2606, 2003.

    Article  CAS  Google Scholar 

  31. N. A. Burnham and R. J. Colton. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A, 7:2906–2913, 1989.

    Article  CAS  Google Scholar 

  32. P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma. Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnol., 2:103–106, 1991.

    Article  Google Scholar 

  33. B. Bhushan, A. V. Kulkarni, W. Bonin, and J. T. Wyrobek. Nano/picoindentation measurements using capacitive transducer in atomic force microscopy. Philos. Mag. A, 74:1117–1128, 1996.

    CAS  Google Scholar 

  34. B. Bhushan and V. N. Koinkar. Nanoindentation hardness measurements using atomic force microscopy. Appl. Phys. Lett., 75:5741–5746, 1994.

    CAS  Google Scholar 

  35. D. DeVecchio and B. Bhushan. Localized surface elasticity measurements using an atomic force microscope. Rev. Sci. Instrum., 68:4498–4505, 1997.

    Article  CAS  Google Scholar 

  36. S. Amelio, A. V. Goldade, U. Rabe, V. Scherer, B. Bhushan, and W. Arnold. Measurements of mechanical properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy. Thin Solid Films, 392:75–84, 2001.

    Article  CAS  Google Scholar 

  37. D. M. Eigler and E. K. Schweizer. Positioning single atoms with a scanning tunnelling microscope. Nature, 344:524–528, 1990.

    Article  CAS  Google Scholar 

  38. A. L. Weisenhorn, J. E. MacDougall, J. A. C. Gould, S. D. Cox, W. S. Wise, J. Massie, P. Maivald, V. B. Elings, G. D. Stucky, and P. K. Hansma. Imaging and manipulating of molecules on a zeolite surface with an atomic force microscope. Science, 247:1330–1333, 1990.

    CAS  Google Scholar 

  39. I. W. Lyo and Ph. Avouris. Field-induced nanometer-to-atomic-scale manipulation of silicon surfaces with the stm. Science, 253:173–176, 1991.

    CAS  Google Scholar 

  40. O. M. Leung and M. C. Goh. Orientation ordering of polymers by atomic force microscope tip-surface interactions. Science, 225:64–66, 1992.

    Google Scholar 

  41. D. W. Abraham, H. J. Mamin, E. Ganz, and J. Clark. Surface modification with the scanning tunneling microscope. IBM J. Res. Dev., 30:492–499, 1986.

    CAS  Google Scholar 

  42. R. M. Silver, E. E. Ehrichs, and A. L. de Lozanne. Direct writing of submicron metallic features with a scanning tunnelling microscope. Appl. Phys. Lett., 51:247–249, 1987.

    Article  CAS  Google Scholar 

  43. A. Kobayashi, F. Grey, R. S. Williams, and M. Ano. Formation of nanometer-scale grooves in silicon with a scanning tunneling microscope. Science, 259:1724–1726, 1993.

    CAS  Google Scholar 

  44. B. Parkinson. Layer-by-layer nanometer scale etching of two-dimensional substrates using the scanning tunneling microscopy. J. Am. Chem. Soc., 112:7498–7502, 1990.

    Article  CAS  Google Scholar 

  45. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander. Nanometer-scale lithography using the atomic force microscope. Appl. Phys. Lett., 61:2293–2295, 1992.

    Article  CAS  Google Scholar 

  46. B. Bhushan. Micro/nanotribology and its applications to magnetic storage devices and mems. Tribol. Int., 28:85–96, 1995.

    Article  CAS  Google Scholar 

  47. L. Tsau, D. Wang, and K. L. Wang. Nanometer scale patterning of silicon(100) surface by an atomic force microscope operating in air. Appl. Phys. Lett., 64:2133–2135, 1994.

    Article  CAS  Google Scholar 

  48. E. Delawski and B. A. Parkinson. Layer-by-layer etching of two-dimensional metal chalcogenides with the atomic force microscope. J. Am. Chem. Soc., 114:1661–1667, 1992.

    Article  CAS  Google Scholar 

  49. B. Bhushan and G. S. Blackman. Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology. ASME J. Tribol., 113:452–458, 1991.

    Google Scholar 

  50. O. Marti, B. Drake, and P. K. Hansma. Atomic force microscopy of liquid-covered surfaces: atomic resolution images. Appl. Phys. Lett., 51:484–486, 1987.

    Article  CAS  Google Scholar 

  51. B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. G. Hansma, and P. K. Hansma. Imaging crystals, polymers and processes in water with the atomic force microscope. Science, 243:1586–1589, 1989.

    CAS  Google Scholar 

  52. M. Binggeli, R. Christoph, H. E. Hintermann, J. Colchero, and O. Marti. Friction force measurements on potential controlled graphite in an electrolytic environment. Nanotechnol., 4:59–63, 1993.

    Article  CAS  Google Scholar 

  53. G. Meyer and N. M. Amer. Novel optical approach to atomic force microscopy. Appl. Phys. Lett., 53:1045–1047, 1988.

    Article  Google Scholar 

  54. J. H. Coombs and J. B. Pethica. Properties of vacuum tunneling currents: Anomalous barrier heights. IBM J. Res. Dev., 30:455–459, 1986.

    CAS  Google Scholar 

  55. M. D. Kirk, T. Albrecht, and C. F. Quate. Low-temperature atomic force microscopy. Rev. Sci. Instrum., 59:833–835, 1988.

    Article  Google Scholar 

  56. F. J. Giessibl, Ch. Gerber, and G. Binnig. A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum. J. Vac. Sci. Technol. B, 9:984–988, 1991.

    Article  CAS  Google Scholar 

  57. T. R. Albrecht, P. Grutter, D. Rugar, and D. P. E. Smith. Low temperature force microscope with all-fiber interferometer. Ultramicroscopy, 42–44:1638–1646, 1992.

    Article  Google Scholar 

  58. H. J. Hug, A. Moser, Th. Jung, O. Fritz, A. Wadas, I. Parashikor, and H. J. Güntherodt. Low temperature magnetic force microscopy. Rev. Sci. Instrum., 64:2920–2925, 1993.

    Article  CAS  Google Scholar 

  59. C. Basire and D. A. Ivanov. Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: Time-resolved hot-stage spm study. Phys. Rev. Lett., 85:5587–5590, 2000.

    Article  CAS  Google Scholar 

  60. H. Liu and B. Bhushan. Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains. Ultramicroscopy, 91:185–202, 2002.

    Article  CAS  Google Scholar 

  61. J. Foster and J. Frommer. Imaging of liquid crystal using a tunneling microscope. Nature, 333:542–547, 1988.

    Article  Google Scholar 

  62. D. Smith, H. Horber, C. Gerber, and G. Binnig. Smectic liquid crystal monolayers on graphite observed by scanning tunneling microscopy. Science, 245:43–45, 1989.

    CAS  Google Scholar 

  63. D. Smith, J. Horber, G. Binnig, and H. Nejoh. Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunnelling microscopy. Nature, 344:641–644, 1990.

    Article  CAS  Google Scholar 

  64. Y. Andoh, S. Oguchi, R. Kaneko, and T. Miyamoto. Evaluation of very thin lubricant films. J. Phys. D, 25:A71–A75, 1992.

    Article  CAS  Google Scholar 

  65. Y. Martin, C. C. Williams, and H. K. Wickramasinghe. Atomic force microscope-force mapping and profiling on a sub 100-A scale. J. Appl. Phys., 61:4723–4729, 1987.

    Article  CAS  Google Scholar 

  66. J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar. Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett., 53:2717–2719, 1988.

    Article  Google Scholar 

  67. K. Yamanaka, H. Ogisco, and O. Kolosov. Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett., 64:178–180, 1994.

    Article  CAS  Google Scholar 

  68. K. Yamanaka and E. Tomita. Lateral force modulation atomic force microscope for selective imaging of friction forces. Jpn. J. Appl. Phys., 34:2879–2882, 1995.

    Article  CAS  Google Scholar 

  69. U. Rabe, K. Janser, and W. Arnold. Vibrations of free and surface-coupled atomic force microscope: Theory and experiment. Rev. Sci. Instrum., 67:3281–3293, 1996.

    Article  CAS  Google Scholar 

  70. Y. Martin and H. K. Wickramasinghe. Magnetic imaging by force microscopy with 1000 Å resolution. Appl. Phys. Lett., 50:1455–1457, 1987.

    Article  Google Scholar 

  71. D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, and T. Yogi. Magnetic force microscopy — general principles and application to longitudinal recording media. J. Appl. Phys., 63:1169–1183, 1990.

    Article  Google Scholar 

  72. C. Schoenenberger and S. F. Alvarado. Understanding magnetic force microscopy. Z. Phys. B, 80:373–383, 1990.

    Article  Google Scholar 

  73. U. Hartmann. Magnetic force microscopy. Annu. Rev. Mater. Sci., 29:53–87, 1999.

    Article  CAS  Google Scholar 

  74. D. W. Pohl, W. Denk, and M. Lanz. Optical stethoscopy-image recording with resolution lambda/20. Appl. Phys. Lett., 44:651–653, 1984.

    Article  Google Scholar 

  75. E. Betzig, J. K. Troutman, T. D. Harris, J. S. Weiner, and R. L. Kostelak. Breaking the diffraction barrier — optical microscopy on a nanometric scale. Science, 251:1468–1470, 1991.

    CAS  Google Scholar 

  76. E. Betzig, P. L. Finn, and J. S. Weiner. Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett., 60:2484, 1992.

    Article  CAS  Google Scholar 

  77. P. F. Barbara, D. M. Adams, and D. B. O’Connor. Characterization of organic thin film materials with near-field scanning optical microscopy (nsom). Annu. Rev. Mater. Sci., 29:433–469, 1999.

    Article  CAS  Google Scholar 

  78. C. C. Williams and H. K. Wickramasinghe. Scanning thermal profiler. Appl. Phys. Lett., 49:1587–1589, 1986.

    Article  Google Scholar 

  79. C. C. Williams and H. K. Wickramasinghe. Microscopy of chemical-potential variations on an atomic scale. Nature, 344:317–319, 1990.

    Article  CAS  Google Scholar 

  80. A. Majumdar. Scanning thermal microscopy. Annu. Rev. Mater. Sci., 29:505–585, 1999.

    Article  CAS  Google Scholar 

  81. O. E. Husser, D. H. Craston, and A. J. Bard. Scanning electrochemical microscopy — high resolution deposition and etching of materials. J. Electrochem. Soc., 136:3222–3229, 1989.

    CAS  Google Scholar 

  82. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe. High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett., 52:1103–1105, 1988.

    Article  Google Scholar 

  83. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe. Kelvin probe force microscopy. Appl. Phys. Lett., 58:2921–2923, 1991.

    Article  Google Scholar 

  84. J. M. R. Weaver and D. W. Abraham. High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B, 9:1559–1561, 1991.

    Article  CAS  Google Scholar 

  85. D. DeVecchio and B. Bhushan. Use of a nanoscale kelvin probe for detecting wear precursors. Rev. Sci. Instrum., 69:3618–3624, 1998.

    Article  CAS  Google Scholar 

  86. B. Bhushan and A. V. Goldade. Measurements and analysis of surface potential change during wear of single-crystal silicon (100) at ultralow loads using kelvin probe microscopy. Appl. Surf. Sci., 157:373–381, 2000.

    Article  CAS  Google Scholar 

  87. P. K. Hansma, B. Drake, O. Marti, S. A. C. Gould, and C. B. Prater. The scanning ion-conductance microscope. Science, 243:641–643, 1989.

    CAS  Google Scholar 

  88. C. B. Prater, P. K. Hansma, M. Tortonese, and C. F. Quate. Improved scanning ion-conductance microscope using microfabricated probes. Rev. Sci. Instrum., 62:2634–2638, 1991.

    Article  CAS  Google Scholar 

  89. J. Matey and J. Blanc. Scanning capacitance microscopy. J. Appl. Phys., 57:1437–1444, 1985.

    Article  Google Scholar 

  90. C. C. Williams. Two-dimensional dopant profiling by scanning capacitance microscopy. Annu. Rev. Mater. Sci., 29:471–504, 1999.

    Article  CAS  Google Scholar 

  91. D. T. Lee, J. P. Pelz, and B. Bhushan. Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance. Rev. Sci. Instrum., 73:3523–3533, 2002.

    Google Scholar 

  92. I. Giaever. Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett., 5:147–148, 1960.

    Article  Google Scholar 

  93. P. K. Hansma and J. Tersoff. Scanning tunneling microscopy. J. Appl. Phys., 61:R1–R23, 1987.

    Article  CAS  Google Scholar 

  94. D. Sarid and V. Elings. Review of scanning force microscopy. J. Vac. Sci. Technol. B, 9:431–437, 1991.

    Article  CAS  Google Scholar 

  95. U. Durig, O. Zuger, and A. Stalder. Interaction force detection in scanning probe microscopy: Methods and applications. J. Appl. Phys., 72:1778–1797, 1992.

    Article  Google Scholar 

  96. J. Frommer. Scanning tunneling microscopy and atomic force microscopy in organic chemistry. Angew. Chem. Int. Ed. Engl., 31:1298–1328, 1992.

    Article  Google Scholar 

  97. H. J. Güntherodt and R. Wiesendanger, editors. Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate-Covered Surfaces. Springer, 1992.

    Google Scholar 

  98. R. Wiesendanger and H. J. Güntherodt, editors. Scanning Tunneling Microscopy, II: Further Applications and Related Scanning Techniques. Springer, 1992.

    Google Scholar 

  99. D. A. Bonnell, editor. Scanning Tunneling Microscopy and Spectroscopy — Theory, Techniques, and Applications. VCH, 1993.

    Google Scholar 

  100. O. Marti and M. Amrein, editors. STM and SFM in Biology. Academic, 1993.

    Google Scholar 

  101. J. A. Stroscio and W. J. Kaiser, editors. Scanning Tunneling Microscopy. Academic, 1993.

    Google Scholar 

  102. H. J. Güntherodt, D. Anselmetti, and E. Meyer, editors. Forces in Scanning Probe Methods. Kluwer, 1995.

    Google Scholar 

  103. G. Binnig and H. Rohrer. Scanning tunnelling microscopy. Surf. Sci., 126:236–244, 1983.

    Article  CAS  Google Scholar 

  104. B. Bhushan, J. Ruan, and B. K. Gupta. A scanning tunnelling microscopy study of fullerene films. J. Phys. D, 26:1319–1322, 1993.

    Article  CAS  Google Scholar 

  105. R. L. Nicolaides, W. E. Yong, W. F. Packard, and H. A. Zhou. Scanning tunneling microscope tip structures. J. Vac. Sci. Technol. A, 6:445–447, 1988.

    Article  CAS  Google Scholar 

  106. J. P. Ibe, P. P. Bey, S. L. Brandon, R. A. Brizzolara, N. A. Burnham, D. P. DiLella, K. P. Lee, C. R. K. Marrian, and R. J. Colton. On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A, 8:3570–3575, 1990.

    Article  CAS  Google Scholar 

  107. R. Kaneko and S. Oguchi. Ion-implanted diamond tip for a scanning tunneling microscope. Jpn. J. Appl. Phys., 28:1854–1855, 1990.

    Article  Google Scholar 

  108. F. J. Giessibl. Atomic resolution of the silicon(111)-(7×7) surface by atomic force microscopy. Science, 267:68–71, 1995.

    CAS  Google Scholar 

  109. B. Anczykowski, D. Krueger, K. L. Babcock, and H. Fuchs. Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation. Ultramicroscopy, 66:251–259, 1996.

    Article  CAS  Google Scholar 

  110. T. R. Albrecht and C. F. Quate. Atomic resolution imaging of a nonconductor by atomic force microscopy. J. Appl. Phys., 62:2599–2602, 1987.

    Article  CAS  Google Scholar 

  111. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, and P. K. Hansma. An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys., 65:164–167, 1989.

    Article  CAS  Google Scholar 

  112. G. Meyer and N. M. Amer. Optical-beam-deflection atomic force microscopy: The NaCl(001) surface. Appl. Phys. Lett., 56:2100–2101, 1990.

    Article  CAS  Google Scholar 

  113. A. L. Weisenhorn, M. Egger, F. Ohnesorge, S. A. C. Gould, S. P. Heyn, H. G. Hansma, R. L. Sinsheimer, H. E. Gaub, and P. K. Hansma. Molecular resolution images of langmuir-blodgett films and dna by atomic force microscopy. Langmuir, 7:8–12, 1991.

    Article  CAS  Google Scholar 

  114. J. Ruan and B. Bhushan. Atomic-scale and microscale friction of graphite and diamond using friction force microscopy. J. Appl. Phys., 76:5022–5035, 1994.

    Article  CAS  Google Scholar 

  115. D. Rugar and P. K. Hansma. Atomic force microscopy. Phys. Today, 43:23–30, 1990.

    CAS  Google Scholar 

  116. D. Sarid. Scanning Force Microscopy. Oxford Univ. Press, 1991.

    Google Scholar 

  117. G. Binnig. Force microscopy. Ultramicroscopy, 42–44:7–15, 1992.

    Article  Google Scholar 

  118. E. Meyer. Atomic force microscopy. Surf. Sci., 41:3–49, 1992.

    Article  CAS  Google Scholar 

  119. H. K. Wickramasinghe. Progress in scanning probe microscopy. Acta Mater., 48:347–358, 2000.

    Article  CAS  Google Scholar 

  120. A._J. den Boef. The influence of lateral forces in scanning force microscopy. Rev. Sci. Instrum., 62:88–92, 1991.

    Article  Google Scholar 

  121. M. Radmacher, R. W. Tillman, M. Fritz, and H. E. Gaub. From molecules to cells: Imaging soft samples with the atomic force microscope. Science, 257:1900–1905, 1992.

    CAS  Google Scholar 

  122. F. Ohnesorge and G. Binnig. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science, 260:1451–1456, 1993.

    CAS  Google Scholar 

  123. G. Neubauer, S. R. Coben, G. M. McClelland, D. Horne, and C. M. Mate. Force microscopy with a bidirectional capacitance sensor. Rev. Sci. Instrum., 61:2296–2308, 1990.

    Article  CAS  Google Scholar 

  124. T. Goddenhenrich, H. Lemke, U. Hartmann, and C. Heiden. Force microscope with capacitive displacement detection. J. Vac. Sci. Technol. A, 8:383–387, 1990.

    Article  Google Scholar 

  125. U. Stahl, C. W. Yuan, A. L. Delozanne, and M. Tortonese. Atomic force microscope using piezoresistive cantilevers and combined with a scanning electron microscope. Appl. Phys. Lett., 65:2878–2880, 1994.

    Article  CAS  Google Scholar 

  126. R. Kassing and E. Oesterschulze. Sensors for scanning probe microscopy, pages 35–54. Kluwer, 1997.

    Google Scholar 

  127. C. M. Mate. Atomic-force-microscope study of polymer lubricants on silicon surfaces. Phys. Rev. Lett., 68:3323–3326, 1992.

    Article  CAS  Google Scholar 

  128. S. P. Jarvis, A. Oral, T. P. Weihs, and J. B. Pethica. A novel force microscope and point contact probe. Rev. Sci. Instrum., 64:3515–3520, 1993.

    Article  CAS  Google Scholar 

  129. D. Rugar, H. J. Mamin, and P. Guethner. Improved fiber-optical interferometer for atomic force microscopy. Appl. Phys. Lett., 55:2588–2590, 1989.

    Article  CAS  Google Scholar 

  130. C. Schoenenberger and S. F. Alvarado. A differential interferometer for force microscopy. Rev. Sci. Instrum., 60:3131–3135, 1989.

    Article  CAS  Google Scholar 

  131. D. Sarid, D. Iams, V. Weissenberger, and L. S. Bell. Compact scanning-force microscope using laser diode. Opt. Lett., 13:1057–1059, 1988.

    Article  CAS  Google Scholar 

  132. N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt Reinhart and Winston, 1976.

    Google Scholar 

  133. G. Binnig and D. P. E. Smith. Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev. Sci. Instrum., 57:1688, 1986.

    Article  CAS  Google Scholar 

  134. S. I. Park and C. F. Quate. Digital filtering of stm images. J. Appl. Phys., 62:312, 1987.

    Article  Google Scholar 

  135. J. W. Cooley and J. W. Tukey. An algorithm for machine calculation of complex fourier series. Math. Computation, 19:297, 1965.

    Article  Google Scholar 

  136. J. Ruan and B. Bhushan. Atomic-scale friction measurements using friction force microscopy: Part i — general principles and new measurement techniques. ASME J. Tribol., 116:378–388, 1994.

    Article  CAS  Google Scholar 

  137. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate. Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A, 8:3386–3396, 1990.

    Article  CAS  Google Scholar 

  138. O. Marti, S. Gould, and P. K. Hansma. Control electronics for atomic force microscopy. Rev. Sci. Instrum., 59:836–839, 1988.

    Article  Google Scholar 

  139. O. Wolter, T. Bayer, and J. Greschner. Micromachined silicon sensors for scanning force microscopy. J. Vac. Sci. Technol. B, 9:1353–1357, 1991.

    Article  CAS  Google Scholar 

  140. E. Meyer, R. Overney, R. Luthi, and D. Brodbeck. Friction force microscopy of mixed langmuir-blodgett films. Thin Solid Films, 220:132–137, 1992.

    Article  CAS  Google Scholar 

  141. H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384:147–150, 1996.

    Article  CAS  Google Scholar 

  142. J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber. Structural and functional imaging with carbon nanotube afm probes. Prog. Biophys. Mol. Biol., 77:73–110, 2001.

    Article  CAS  Google Scholar 

  143. G. S. Blackman, C. M. Mate, and M. R. Philpott. Interaction forces of a sharp tungsten tip with molecular films on silicon surface. Phys. Rev. Lett., 65:2270–2273, 1990.

    Article  CAS  Google Scholar 

  144. S. J. O’shea, M. E. Welland, and T. Rayment. Atomic force microscope study of boundary layer lubrication. Appl. Phys. Lett., 61:2240–2242, 1992.

    Article  CAS  Google Scholar 

  145. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum., 64:403–405, 1993.

    Article  CAS  Google Scholar 

  146. D. W. Pohl. Some design criteria in stm. IBM J. Res. Dev., 30:417, 1986.

    Article  CAS  Google Scholar 

  147. W. T. Thomson and M. D. Dahleh. Theory of Vibration with Applications. Prentice Hall, 5th edition, 1998.

    Google Scholar 

  148. J. Colchero. Reibungskraftmikroskopie, 1993.

    Google Scholar 

  149. G. M. McClelland, R. Erlandsson, and S. Chiang. Atomic force microscopy: General principles and a new implementation, volume 6B, pages 1307–1314. Plenum, 1987.

    Google Scholar 

  150. Y. R. Shen. The Principles of Nonlinear Optics. Wiley, 1984.

    Google Scholar 

  151. T. Baumeister and S. L. Marks. Standard Handbook for Mechanical Engineers. McGraw-Hill, 7th edition, 1967.

    Google Scholar 

  152. J. Colchero, O. Marti, H. Bielefeldt, and J. Mlynek. Scanning force and friction microscopy. Phys. Stat. Sol., 131:73–75, 1991.

    Google Scholar 

  153. R. Young, J. Ward, and F. Scire. Observation of metal-vacuum-metal tunneling, field emission, and the transition region. Phys. Rev. Lett., 27, 1971.

    Google Scholar 

  154. R. Young, J. Ward, and F. Scire. The topographiner: An instrument for measuring surface microtopography. Rev. Sci. Instrum., 43:999, 1972.

    Article  Google Scholar 

  155. C. Gerber and O. Marti. Magnetostrictive positioner. IBM Tech. Disclosure Bull., 27:6373, 1985.

    Google Scholar 

  156. R. Garcìa Cantù, M. A. Huerta Garnica. Long-scan imaging by stm. J. Vac. Sci. Technol. A, 8:354, 1990.

    Article  Google Scholar 

  157. C. J. Chen. In situ testing and calibration of tube piezoelectric scanners. Ultramicroscopy, 42–44:1653–1658, 1992.

    Article  Google Scholar 

  158. R. G. Carr. J. Microscopy, 152:379, 1988.

    Google Scholar 

  159. C. J. Chen. Electromechanical deflections of piezoelectric tubes with quartered electrodes. Appl. Phys. Lett., 60:132, 1992.

    Article  Google Scholar 

  160. N. Libioulle, A. Ronda, M. Taborelli, and J. M. Gilles. Deformations and nonlinearity in scanning tunneling microscope images. J. Vac. Sci. Technol. B, 9:655–658, 1991.

    Article  Google Scholar 

  161. E. P. Stoll. Restoration of stm images distorted by time-dependent piezo driver aftereffects. Ultramicroscopy, 42–44:1585–1589, 1991.

    Google Scholar 

  162. R. Durselen, U. Grunewald, and W. Preuss. Calibration and applications of a high precision piezo scanner for nanometrology. Scanning, 17:91–96, 1995.

    Article  Google Scholar 

  163. J. Fu. In situ testing and calibrating of z-piezo of an atomic force microscope. Rev. Sci. Instrum., 66:3785–3788, 1995.

    Article  CAS  Google Scholar 

  164. R. C. Barrett and C. F. Quate. Optical scan-correction system applied to atomic force microscopy. Rev. Sci. Instrum., 62:1393, 1991.

    Article  CAS  Google Scholar 

  165. R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani. Near-field differential scanning optical microscope with atomic force regulation. Appl. Phys. Lett., 60:2957–2959, 1992.

    Article  CAS  Google Scholar 

  166. J. E. Griffith, G. L. Miller, and C. A. Green. A scanning tunneling microscope with a capacitance-based position monitor. J. Vac. Sci. Technol. B, 8:2023–2027, 1990.

    Article  Google Scholar 

  167. A. E. Holman, C. D. Laman, P. M. L. O. Scholte, W. C. Heerens, and F. Tuinstra. A calibrated scanning tunneling microscope equipped with capacitive sensors. Rev. Sci. Instrum., 67:2274–2280, 1996.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B., Marti, O. (2005). Scanning Probe Microscopy — Principle of Operation, Instrumentation, and Probes. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28248-3_2

Download citation

Publish with us

Policies and ethics