Skip to main content
Log in

Understanding magnetic force microscopy

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Magnetic force microscopy is a new method for imaging ferromagnetic domains with a high lateral resolution (10 nm). In this paper we give the basic tip parameters that have to be taken into account to achieve a quantitative image interpretation. For the electrochemically otched polycrystalline iron, nickel and cobalt wires, the tip-apex domain is found to be oriented along the tip axis, because of shape anisotropy. The stray field emerging from the tip apex is comparable to the size of the tip saturation field. The effective domain lengthL determines the image formation: the force due to magnetization patterns of scales which are large compared toL follow the point-dipole approximation. In the opposite case, a single-pole model is more appropriate. While a cobalt tip can be treated as an isolated domain, for nickel and iron a net polarization in the tip wire induced by the front apex-domain has to be considered. A new analytical theory provides an overall understanding of the image formation and allows the determination of the magnetic field vector and the estimation of its magnitude from measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, Y., Wickramasinghe, H.K.: Appl. Phys. Lett.50, 1455 (1987)

    Google Scholar 

  2. Saenz, J.J., Garcia, N., Grütter, P., Meyer, E., Heinzelmann, H., Wiesendanger, R., Rosenthaler, L., Hidber, H.R., Güntherodt, H.J.: J. Appl. Phys.62, 4293 (1987)

    Google Scholar 

  3. Binnig, G., Quate, C.F., Gerber, Ch.: Phys. Rev. Lett.56, 930 (1986)

    Google Scholar 

  4. Erlandsson, R., McClelland, G.M., Mate, C.M., Chiang, S.: J. Vac. Sci. Technol.A6(2), 266 (1988)

    Google Scholar 

  5. Rugard, D., Mamin, H.J., Erlandsson, Stern, J.E., Terris, B.D.: Rev. Sci. Instrum.59, 2337 (1988)

    Google Scholar 

  6. Meyer, G., Amer, N.M.: Appl. Phys. Lett.53, 2400 (1988)

    Google Scholar 

  7. Boef, A.J. den: Appl. Phys. Lett.55, 439 (1989)

    Google Scholar 

  8. Schönenberger, C., Alvarado, S.F.: Rev. Sci. Instrum.60, 3131 (1989)

    Google Scholar 

  9. Rugard, D., Mamin, H.J., Güthner, P.: Appl. Phys. Lett.55, 2588 (1989)

    Google Scholar 

  10. Göddenhenrich, T., Hartmann, U., Anders, M., Heiden, C.: J. Microsc.152, 527 (1988)

    Google Scholar 

  11. Martin, Y., Rugar, D., Wickramashinge, H.K.: Appl. Phys. Lett.52, 44 (1988)

    Google Scholar 

  12. Sarid, D., Iams, D., Weissenberger, V., Bell, L.S.: Opti. Lett.13, 1057 (1988)

    Google Scholar 

  13. Mamin, H.J., Rugard, D., Stern, J.E., Terris, B.D., Lambert, S.E.: Appl. Phys. Lett.53, 1563 (1988)

    Google Scholar 

  14. Abraham, D.W., Williams, C.C., Wickramasinghe, H.K.: Appl. Phys. Lett.53, 1446 (1988)

    Google Scholar 

  15. Grütter, P., Meyer, E., Heinzelmann, H., Rosenthaler, L., Hidber, H.R., Günterodt, H.J.: J. Vac. Sci. Technol.A6, 279 (1988)

    Google Scholar 

  16. Mamin, H.J., Rugard, D., Stern, J.E., Fontana, Jr., R.E., Kasiraj, P.: Appl. Phys. Lett.55, 318 (1989)

    Google Scholar 

  17. Grütter, P., Wadas, A., Meyer, E., Hidber, H.R., Güntherodt, H.J.: J. Appl. Phys.66, 6001 (1989)

    Google Scholar 

  18. Dürig, U., Gimzewski, J.K., Pohl, D.W.: Phys. Rev. Lett.57, 2403 (1986)

    Google Scholar 

  19. Martin, Y., Williams, C.C., Wickramasinghe, H.K.: J. Appl. Phys.61, 4723 (1987)

    Google Scholar 

  20. Schönenberger, C., Alvarado, S.F., Lambert, S.E., Sanders, I.L.: J. Appl. Phys. (to be published)

  21. Lambert, S.E., Sanders, I.L., Patlach, A.M., Krounbi, M.T.: IEEE Trans. Magn.MAG-23, 3690 (1987)

    Google Scholar 

  22. Edelmann, H., Covault, M.: IEEE Trans. Magn.MAG-21, 2583 (1985)

    Google Scholar 

  23. High purity (99.99%) metal wires from Good Fellow Metals Ltd., Cambridge, England

  24. Siegenthaler, H., Christof, R.: Private communication

  25. Hobbs, P.C.D., Abraham, D.W., Wickramasinghe, H.K.: Appl. Phys. Lett.55, 2357 (1989)

    Google Scholar 

  26. Grütter, P.: PhD thesis, University of Basel, Switzerland (1989)

  27. Hartmann, U.: Phys. Lett. A137, 475 (1981)

    Google Scholar 

  28. The thermal fluctuations in the cantilever correspond to the force\(\delta F_{th} = \sqrt {BkTC/\left( {\pi Qf_0 } \right)}\) (Ref. 8). We derive 10−12 N by inserting the following values: bandwidthB=100 Hz, temperatureT=300K, cantilever complianceC=10 N/m, cantilever quality factorQ=100, and cantilever resonance frequencyf 0=10 kHz

  29. Baird, A.W., Chaurette, W.F., Lustig, C.D.: IEEE Trans. Magn.MAG-15, 1631 (1979)

    Google Scholar 

  30. Hoyt, R., Hern, D.E., Best, J.S., Hong, C.T., Horne, D.E.: J. Appl. Phys.55, 2241 (1984)

    Google Scholar 

  31. Karlquist, O.: Trans. Roy. Inst. Technol. Stockholm86, 1 (1954)

    Google Scholar 

  32. Ferromagnetic materials. Wohlfahrt, E.P., (ed.), Vol. 1, New York: Elsevier Science 1986

    Google Scholar 

  33. Hartmann, U.: J. Appl. Phys.64, 1561 (1988)

    Google Scholar 

  34. Wadas, A.: J. Magn. Magn. Mater.72, 295 (1988)

    Google Scholar 

  35. Saenz, J.J., Garcia, N., Slonczewski, J.C.: Appl. Phys. Lett.53, 1449 (1988)

    Google Scholar 

  36. Hartmann, U., Heiden, C.: J. Microsc.152, 281 (1988)

    Google Scholar 

  37. Hartmann, U.: Phys. Lett. A137, 475 (1989)

    Google Scholar 

  38. Hartmann, U.: Phys. Status Solidi115, 285 (1989)

    Google Scholar 

  39. Wadas, A.: J. Magn. Magn. Mater.78, 263 (1989)

    Google Scholar 

  40. Wadas, A., Grütter, P.: Phys. Rev. B39, 12013 (1989)

    Google Scholar 

  41. Mansuripur, A.: IEEE Trans. Magn.MAG-25, 3467 (1989)

    Google Scholar 

  42. Mansuripur, A., Giles, R.: IEEE Trans. Magn.MAG-24, 2326 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönenberger, C., Alvarado, S.F. Understanding magnetic force microscopy. Z. Physik B - Condensed Matter 80, 373–383 (1990). https://doi.org/10.1007/BF01323519

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01323519

Keywords

Navigation