Skip to main content

Asexual Sporulation in Mycelial Fungi

  • Chapter
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

V. Concluding Remarks

Our knowledge on the regulation of spore formation in mycelial fungi has expanded enormously during the past 10 years, since Navarro-Bordonaba and Adams reviewed conidia production in A. nidulans in the first edition of this volume (The Mycota, Vol. I, 1st edn., Chap. 20). A number of novel components have been discovered in A. nidulans and other fungi, and gene-function relationships have been described for many developmental genes. The involvement of the main eukaryotic signalling cascades has been demonstrated but a detailed un derstanding of how these perceive and transmit the signals, and how they interact is largely lacking. The availability of an increasing number of genomes, and the constant improvement of molecular methods open the possibility for reverse genetic approaches and should allow a rapid increase of our knowledge in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams TH, Timberlake WE (1990) Developmental repression of growth and gene expression in Aspergillus. Proc Natl Acad Sci USA 87:5405–5409

    PubMed  CAS  Google Scholar 

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362

    PubMed  CAS  Google Scholar 

  • Adams TH, Wieser JK, Yu J-H (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    PubMed  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier, Amsterdam

    Google Scholar 

  • Anderson GE (1971) The life history and genetics of Coprinus lagopus. Harris Biological Supplies, Weston-super-Mare, UK

    Google Scholar 

  • Andrianopoulos A, Timberlake WE (1994) The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14:2503–2515

    PubMed  CAS  Google Scholar 

  • Angulo-Romero J, Mediavilla-Molina A, Dominguez-Vilches E (1999) Conidia of Alternaria in the atmosphere of the city of Cordoba, Spain in relation to meteorological parameters. Int J Biometeorol 43:45–49

    PubMed  CAS  Google Scholar 

  • Aramayo R, Timberlake WE (1990) Sequence and molecular structure of the Aspergillus nidulans yA (laccase I) gene. Nucleic Acids Res 18:3415

    PubMed  CAS  Google Scholar 

  • Aramayo R, Peleg Y, Addison R, Metzenberg R (1996) Asm-1 +, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144:991–1003

    PubMed  CAS  Google Scholar 

  • Ásgeirsdóttir SA, Halsall JR, Casselton LA (1997) Expression of two closely linked hydrophobin genes of Coprinus cinereus is monokaryon-specific and down-regulated by the oid-1 mutation. Fungal Genet Biol 22:54–63

    PubMed  Google Scholar 

  • Axelrod DE, Grealt M, Pastushok M (1973) Gene control of developmental competence in Aspergillus nidulans. Dev Biol 34:9–15

    PubMed  CAS  Google Scholar 

  • Bailey-Shrode L, Ebbole DJ (2004) The fluffy gene of Neurospora crassa is necessary and sufficient to induce conidiophore development. Genetics 166:1741–1749

    PubMed  CAS  Google Scholar 

  • Balance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene. Biochem Biophys Res Commun 112:284–289

    Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6:2382–2394

    PubMed  CAS  Google Scholar 

  • Bennett RJ, Miller MG, Chua PR, Maxon ME, Johnson AD (2005) Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol Microbiol 55:1046–1059

    PubMed  CAS  Google Scholar 

  • Bensaude M (1918) Recherches sur le cycle évolutif et la sexualité chez les Basidiomycètes. PhD Thesis, Faculté des Sciences deParis. Imprimerie Nemourienne, Henri Bouloy, Nemours, France

    Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    PubMed  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    PubMed  CAS  Google Scholar 

  • Borneman AR, Hynes MJ, Andrianopoulos A (2000) The abaA homologue of Penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. Mol Microbiol 38:1034–1047

    PubMed  CAS  Google Scholar 

  • Borneman AR, Hynes MJ, Andrianopoulos A (2002) A basic helix-loop-helix protein with similarity to the fungal morphological regulators, Phd1p, Efg1p and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei. Mol Microbiol 44:621–631

    PubMed  CAS  Google Scholar 

  • Bottoli APF (2001) Metabolic and environmental control of development in Coprinus cinereus. PhD Thesis, ETH Zurich, Zurich, Switzerland

    Google Scholar 

  • Boulianne RP, Liu Y, Aebi M, Lu BC, Kües U (2000) Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non-classical pathway. Microbiology 146:1841–1853

    PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2003) Control of morphogenesis and actin localization by the Penicillium marneffei Rac homolog. J Cell Sci 116:1249–1260

    PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2005) The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol Microbiol 55:1487–1501

    PubMed  CAS  Google Scholar 

  • Brodie HJ (1931) The oidia of Coprinus lagopus and their relation with insects. Ann Bot 45:315–344

    Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    PubMed  CAS  Google Scholar 

  • Bruggeman J, Debets AJM, Wijngaarden PJ, deVisser JAGM, Hoekstra RF (2003) Sex slows down the accumulation of deleteriousmutations in the homothallic fungus Aspergillus nidulans. Genetics 164:479–485

    PubMed  CAS  Google Scholar 

  • Busby TM, Miller KY, Miller BL (1996) Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics 143:155–163

    PubMed  CAS  Google Scholar 

  • Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49:717–730

    PubMed  CAS  Google Scholar 

  • Bussink HJ, Osmani SA (1998) A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. EMBO J 17:3990–4003

    PubMed  CAS  Google Scholar 

  • Bussink HJ, Osmani SA (1999) A mitogen-activated protein kinase (MPKA) is involved in polarized growth in the filamentous fungus Aspergillus nidulans. FEMS Microbiol Lett 173:117–125

    PubMed  CAS  Google Scholar 

  • Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20

    PubMed  Google Scholar 

  • Campbell MA, Medd RW, Brown JF (1996) Growth and sporulation of Pyrenophora seminiperda in vitro: effects of culture media, temperature and pH. Mycol Res 100:311–317

    Google Scholar 

  • Casselton LA, Olesnicky NS (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62:55–70

    PubMed  CAS  Google Scholar 

  • Castle AJ, Boulianne RB (1991) Fimbrial proteins of Ustilago violacea, Coprinus cinereus, and Schizophyllum commune. MSA Newslett 42:8

    Google Scholar 

  • Celerin M, Ray JM, Schisler NJ, Day AW, Stetler-Stevenson WG, Laudenbach DE (1996) Fungal fimbriae are composed of collagen. EMBO J 15:4445–4453

    PubMed  CAS  Google Scholar 

  • Champe SP, Simon LD (1992) Cellular differentiation and tissue formation. In: Rossomando EF, Alexander S (eds) Morphogenesis: an analysis of the development of biological form. Dekker, New York, pp 63–91

    Google Scholar 

  • Champe SP, Rao P, Chang A (1987) An endogenous inducer of sexual development in Aspergillus nidulans. J Gen Microbiol 133:1383–1387

    PubMed  CAS  Google Scholar 

  • Chan YF, Chow TC (1990) Ultrastructural observations on Penicillium marneffei natural human infection. Ultrastruct Pathol 14:439–452

    PubMed  CAS  Google Scholar 

  • Chang YC, Timberlake WE (1992) Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133:29–38

    Google Scholar 

  • Chang MH, Chae KS, Han DM, Jahng KY (2004) The GanB Gα-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167:1305–1315

    PubMed  CAS  Google Scholar 

  • Chidiac P, Roy AA (2003) Activity, regulation, and intracellular localization of RGS proteins. Receptors Channels 9:135–147

    PubMed  CAS  Google Scholar 

  • Chou S, Huang L, Liu H (2004) Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell 119:981–990

    PubMed  CAS  Google Scholar 

  • Clémençon H (1997) Anatomie der Hymenomyceten. Eine Einführung in die Cytologie und Plectologie der Krustenpilze, Porlinge, Keulenpilze, Leistlinge, Blätterpilze und Röhrlinge (Anatomy of the Hymenomycetes. An introduction to the cytology and plectology of crust fungi, bracket fungi, club fungi, Chantarelles, Agarics and Boletes). Flück-Wirth, Teufen, Switzerland

    Google Scholar 

  • Clutterbuck AJ (1969) A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317–327

    PubMed  CAS  Google Scholar 

  • Clutterbuck AJ (1975) Cyclic AMP levels during growth and conidiation. Aspergillus Newslett 12:13–15

    Google Scholar 

  • Cooper CRJ, McGinnis MR (1997) Pathology of Penicillium marneffei: an emerging acquired immunodeficiency syndrome-related pathogen. Arch Pathol Lab Med 121:798–804

    PubMed  Google Scholar 

  • Copes WE, Hendrix FF (2004) Effect of temperature on sporulation of Botryosphaeria dothidea, B. obtusa, and B. rhodina. Plant Dis 88:292–296

    Google Scholar 

  • Corrochano LM, Lauter FR, Ebbole DJ, Yanofsky C (1995) Light and developmental regulation of the gene con-10 of Neurospora crassa. Dev Biol 167:190–200

    PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ (2004) The Neurospora circadian system. J Biol Rhythm 19:414–424

    CAS  Google Scholar 

  • Dutton JR, Johns S, Miller BL (1997) StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J 16:5710–5721

    PubMed  CAS  Google Scholar 

  • Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology 149:2301–2303

    PubMed  CAS  Google Scholar 

  • Ellis MB, Ellis JP (1998) Microfungi on miscellaneous substrates. An identification handbook. Richmond, Slough, England

    Google Scholar 

  • Emri T, Molnar Z, Pusztahelyi T, Rosén S, Posci I (2004) Effect of vitamin E on autolysis and sporulation of Aspergillus nidulans. Appl Biochem Biotechnol 118:337–348

    PubMed  CAS  Google Scholar 

  • Esser K (2001) Kryptogamen 1. Cyanobakterien Algen Pilze Flechten, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fang EGC, Dean RA (2000) Site-directedmutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol Plant Microb Interact 13:1214–1227

    CAS  Google Scholar 

  • Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Orgeon. Can J For Res 33:612–623

    Google Scholar 

  • Fillinger S, Chaveroche MK, Shimizu K, Keller N, d’Enfert C (2002) cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 44:1001–1016

    PubMed  CAS  Google Scholar 

  • Fischer R, Kües U (2003) Developmental processes in filamentous fungi. In: Prade RA, Bohnert HJ (eds) Genomics of plants and fungi. Dekker, New York, pp 41–118

    Google Scholar 

  • Fischer R, Timberlake WE (1995) Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein necessary for nuclear positioning and completion of asexual development. J Cell Biol 128:485–498

    PubMed  CAS  Google Scholar 

  • Fortwendel JR, Panepinto JC, Seitz AE, Askew DS, Rhodes JC (2004) Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genet Biol 41:129–139

    PubMed  CAS  Google Scholar 

  • Fowler TJ, Mitton MF (2000) Scooter, a new active transposon in Schizophyllum commune, has disrupted two genes regulating signal transduction. Genetics 156:1585–1594

    PubMed  CAS  Google Scholar 

  • Frederick BA, Caesar-Tonthat TC, Wheeler MH, Sheehan KB, Edens WA, Henson JM (1999) Isolation and characterisation of Gaeumannomyces graminis var. graminis melanin mutanrs. Mycol Res 103:99–1001

    CAS  Google Scholar 

  • Fujiwara M, Ichinomiya M, Motoyama T, Horiuchi H, Ohta A, Takagi M (2000) Evidence that the Aspergillus nidulans class I and class II chitin synthase genes, chsC and chsA, share critical roles in hyphal wall integrity and conidiophore development. J Biochem 127:359–366

    PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman J, Batzoglou S, Lee S-I, Bastürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman, Butler J, Purcell S, Harris SD, Braus GH, Draht O, Busch S, d’Enfert C, Bouchier C, Goldman GH, Bell-Pederson D, Griffith-Jones S, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka TU, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes MJ, Paoletti M, Fischer R, Miller BL, Dyer PS, Sachs MS, Osmani SA, Birren B (2005) Sequencing and comparative analysis of Aspergillus nidulans. Nature (in press)

    Google Scholar 

  • Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123

    PubMed  CAS  Google Scholar 

  • Gavrias V, Andrianopoulos A, Gimeno CJ, Timberlake WE (1996) Sacchromyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19:1255–1263

    PubMed  CAS  Google Scholar 

  • Gimeno CJ, Fink GR (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14:2100–2112

    PubMed  CAS  Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    PubMed  CAS  Google Scholar 

  • Goddard MR, Godfray CJ, Burt A (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–640

    PubMed  CAS  Google Scholar 

  • Gooch VD, Freeman L, Lakin-Thomas PL (2004) Time-lapse analysis of the circadian rhythms of conidiation and growth rate in Neurospora. J Biol Rhyth 19:493–503

    Google Scholar 

  • Gourbière F, Debouzie D (2003) Local variations in microfungal populations on Pinus sylvestris needles. Mycol Res 107:1221–1230

    PubMed  Google Scholar 

  • Gourbière S, Gourbière F (2002) Competition between unitrestricted fungi: a metapopulationmodel. J Theor Biol 217:351–368

    PubMed  Google Scholar 

  • Gourbière F, Gourbière S, van Maanen A, Vallet G, Auger P (1999) Proportion of needles colonized by one fungal species in coniferous litter: the dispersal hypothesis. Mycol Res 103:353–359

    Google Scholar 

  • Gourbière F, van Maanen A, Debouzie D (2001) Associations between three fungi on pine needles and their variation along a climatic gradient. Mycol Res 105:1101–1109

    Google Scholar 

  • Greene AV, Keller N, Haas H, Bell-Perdersen D (2003) A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell 2:231–237

    PubMed  CAS  Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere, 2nd edn. Leonard Hill, Aylesbury

    Google Scholar 

  • Guignard R, Grange F, Turian G (1984) Microcycle conidiation induced by partial nitrogen deprivation in Neurospora crassa. Can J Microbiol 30:1210–1215

    CAS  Google Scholar 

  • Hager KM, Yanofsky C (1990) Genes expressed during conidiation in Neurospora crassa — molecular characterization of con-13. Gene 96:153–159

    PubMed  CAS  Google Scholar 

  • Han S, Adams TH (2001) Complex control of the developmental regulatory locus brlA in Aspergillus nidulans. Mol Genet Genomics 266:260–270

    PubMed  CAS  Google Scholar 

  • Han K-H, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43:1065–1078

    PubMed  CAS  Google Scholar 

  • Han S, Navarro J, Greve RA, Adams TH (1993) Translational repression of brlA expression prevents premature development in Aspergillus. EMBO J 12:2449–2457

    PubMed  CAS  Google Scholar 

  • Han K-H, Han KY, Yu J-H, Chae KS, Jahng KY, Han DM (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41:299–309

    PubMed  CAS  Google Scholar 

  • Han K-H, Seo J-A, Yu J-H (2004) A putative G proteincoupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51:1333–1345

    PubMed  CAS  Google Scholar 

  • Harris SD, Momany C (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391–400

    PubMed  CAS  Google Scholar 

  • Heintz CE, Niederpruem DJ (1971) Ultrastructure of quiescent and germinated basidiospores and oidia of Coprinus lagopus. Mycologia 63:745–766

    Google Scholar 

  • Heintzen C, Loros JJ, Dunlap JC (2001) The Pas protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464

    PubMed  CAS  Google Scholar 

  • Hemmati F, Pell JK, McCartney HA, Deadman ML (2001) Airborne concentrations of conidia of Erynia neoaphidis above cereal fields. Mycol Res 105:485–489

    Google Scholar 

  • Hiscock SJ, Kües U (1999) Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. Int Rev Cytol 193:165–295

    PubMed  CAS  Google Scholar 

  • Hoff B, Schmitt EK, Kück U (2005) CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysosporium. Mol Microbiol 56:1220–1233

    PubMed  CAS  Google Scholar 

  • Hollenstein M (1997) Untersuchungen zur Oidienbildung an Dikaryen von Coprinus cinereus. Wachstum, Oidiendifferenzierung und Lichtinduktivität der Oidienproduktion. Semesterarbeit, Institute for Microbiology, ETH Zurich, Switzerland

    Google Scholar 

  • Horn BW, Greene RL, Sörensen RB, Blankenship PD, Dorner JW (2001) Conidial movement of nontoxigenic Aspergillus flavus and A. parasiticus in peanut fields following application to soil. Mycopathologia 151:81–92

    PubMed  CAS  Google Scholar 

  • Hovmøller MS, Justesen AF, Brown JKM (2002) Clonality and long-distance migrationof Puccinia striiformis f.sp tritici in north-west Europe. Plant Pathol 51:24–32

    Google Scholar 

  • Hui C, Tanaka Y, Takeo K, Kitamato Y (1999) Morphological and cytological aspects of oidium formation in a basidiomycete, Pholiota nameko. Mycoscience 40:95–102

    Google Scholar 

  • Ishi K, Maruyama J, Juvvadi PR, Nakajima H, Kitamoto K (2005) Visualizing nuclear migration during conidiophore development in Aspergillus nidulans and Aspergillus oryzae: multinucleation of conidia occurs through direct migration of plural nuclei from phialides and confers greater viability and early germination in Aspergillus oryzae. Biosci Biotechnol Biochem 69:747–754

    PubMed  CAS  Google Scholar 

  • Jeffs LB, Xavier IJ, Matai RE, Khachatourians GG (1999) Relationships between fungal spore morphogenesis and surface properties for entomopathogenic members of the genera Beauveria, Metarhizium, Paecilomyces, Tolypocladium, and Verticillium. Can J Microbiol 45:936–948

    CAS  Google Scholar 

  • Johnson A (2003) The biology of mating in Candida albicans. Nat Rev Microbiol 1:106–116

    PubMed  CAS  Google Scholar 

  • Johnstone IL, Hughes SG, Clutterbuck AJ (1985) Cloning an Aspergillus nidulans developmental gene by transformation. EMBO J 4:1307–1311

    PubMed  CAS  Google Scholar 

  • Käfer E (1965) The origin of translocations in Aspergillus nidulans. Genetics 52:217–232

    PubMed  Google Scholar 

  • Karos M, Fischer R (1996) hymA (hypha-like metulae), a new developmental mutant of Aspergillus nidulans. Microbiology 142:3211–3218

    PubMed  CAS  Google Scholar 

  • Karos M, Fischer R (1999) Molecular characterization of HymA, an evolutionarily highly conserved and highly expressed protein of Aspergillus nidulans. Mol Gen Genet 260:510–521

    PubMed  CAS  Google Scholar 

  • Kawasaki L, Aguirre J (2001) Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183:1434–1440

    PubMed  CAS  Google Scholar 

  • Kawasaki L, Sanchez O, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45:1153–1163

    PubMed  CAS  Google Scholar 

  • Kays AM, Borkovich KA (2004) Severe impairment of growth and differentiation in a Neurospora crassa mutant lacking all heterotrimeric Gα proteins. Genetics 166:1229–1240

    PubMed  CAS  Google Scholar 

  • Kemp RFO (1975) Breeding biology of Coprinus species in the section Lanatuli. Trans Br Mycol Soc 65:375–388

    Google Scholar 

  • Kemp RFO (1977) Oidial homing and the taxonomy and speciation of basidiomycetes with special reference to the genus Coprinus. In: Clémençon H (ed) The species concept in hymenomycetes. Cramer, Vaduz, Liechtenstein, pp 259–276

    Google Scholar 

  • Kendrick B (ed) (1979a) The whole fungus, vol 1. National Museum of Natural Sciences, Ottawa, Canada

    Google Scholar 

  • Kendrick B (ed) (1979b) The whole fungus, vol 2. National Museum of Natural Sciences, Ottawa, Canada

    Google Scholar 

  • Kendrick B, Watling R (1979) Mitospores in basidiomycetes. In: Kendrick B (ed) The Whole Fungus, vol 2. National Museum of Natural Sciences, Ottawa, Canada, pp 473–546

    Google Scholar 

  • Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33

    PubMed  CAS  Google Scholar 

  • Kertesz-Chaloupková K, Walser PJ, Granado JD, Aebi M, Kües U (1998) Blue light overrides repression of asexual sporulation bymating type genes in the basidiomcycete Coprinus cinereus. Fungal Genet Biol 23:95–109

    PubMed  Google Scholar 

  • Kim H-S, Han K-Y, Kim K-J, Han D-M, Jahng K-Y, Chae K-S (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80

    PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Dictionary of the fungi, 9th edn. CAB International, Wallingford, UK

    Google Scholar 

  • Kitamato Y, Shishida M, Yamamoto H, Takeo K, Masuda P (2000) Nuclear selection in oidium formation from dikaryotic mycelia of Flammulina velutipes. Mycoscience 41:417–423

    Google Scholar 

  • Kothe E (2001) Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 56:602–612

    PubMed  CAS  Google Scholar 

  • Kothe GO, Free SJ (1998) The isolation and characterization of nrc-1 and ncr-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. Genetics 149:117–130

    PubMed  CAS  Google Scholar 

  • Krystofova S, Borkovich KA (2005) The heterotrimeric Gprotein subunits GNG-1 and GNB-1 forma Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa. Eukaryot Cell 4:365–378

    PubMed  CAS  Google Scholar 

  • Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. MicrobiolMol Biol Rev 64:316–353

    Google Scholar 

  • Kües U (2002) Sexuelle und asexuelle Fortpflanzung bei einem Pilz mit 12000 Geschlechtern. Vierteljahrsschr Naturforsch Ges Zürich 147:23–34

    Google Scholar 

  • Kües U, Granado JD, Hermann R, Boulianne RP, Kertesz-Chaloupková K, Aebi M (1998a) The A mating type and blue light regulate all known differentiation processes in the basidiomycete Coprinus cinereus. Mol Gen Genet 260:81–91

    PubMed  Google Scholar 

  • Kües U, Granado JD, Kertesz-Chaloupková K, Walser PJ, Hollenstein M, Polak E, Boulianne R, Bottoli APF, Aebi M (1998b) Mating type and light are major regulators of development in Coprinus cinereus. In: Van Griensven LJLD, Visser J (eds) Proc 4th Meet The Genetics and Cellular Biology of Basidiomycetes. Mushroom Experimental Station, Horst, The Netherlands

    Google Scholar 

  • Kües U, Polak E, Bottoli APF, Hollenstein M, Walser PJ, Boulianne RP, Hermann R, Aebi M (2002a) Vegetative development in Coprinus cinereus. In: Osiewacz HD (ed) Molecular biology of fungal development. Dekker, New York, pp 133–164

    Google Scholar 

  • Kües U, Walser PJ, Klaus MJ, Aebi M (2002b) Influence of activated A and B mating-type pathways on developmental processes in the basidiomycete Coprinus cinereus. Mol Genet Genomics 268:262–271

    PubMed  Google Scholar 

  • Kües U, Künzler M, Bottoli APF, Walser PJ, Granado JD, Liu Y, Bertossa RC, Ciardo D, Clergeot P-H, Loos S et al. (2004) Mushroom development in higher basidiomycetes; implications for human and animal health. In: Kushwaha RKS (ed) Fungi in human and animal health. Scientific Publishers, Jodhpur, India, pp 431–469

    Google Scholar 

  • Lau GW, Hamer JE (1998) Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol 24:228–239

    PubMed  CAS  Google Scholar 

  • Lauter FR, Russo VEA, Yanofsky C (1992) Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev 6:2373–2381

    PubMed  CAS  Google Scholar 

  • Lee BN, Adams TH (1994a) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334

    PubMed  CAS  Google Scholar 

  • Lee BN, Adams TH (1994b) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651

    PubMed  CAS  Google Scholar 

  • Lee K, Ebbole DJ (1998) Tissue-specific repression of starvation and stress responses of the Neurospora crassa con-10 gene is mediated by RCO1. Fungal Genet Biol 23:269–278

    PubMed  CAS  Google Scholar 

  • Lee JI, Choi JH, Park BC, Park YH, Lee MY, Park HM, Maeng PJ (2004) Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genet Biol 41:635–646

    PubMed  CAS  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen W-C, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    PubMed  CAS  Google Scholar 

  • Li DW, Kendrick B (1995) A year-round study on functional-relationships of airborne fungi with meteorological factors. Int J Biometeorol 39:74–80

    PubMed  CAS  Google Scholar 

  • Li DW, Kendrick B (1996) Functional and causal relationships between indoor and outdoor airborne fungi. Can J Bot 74:194–209

    Google Scholar 

  • Linde CC, Zala M, Ceccarelli S, McDonald BA (2003) Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating type alleles. Fungal Genet Biol 40:115–125

    PubMed  CAS  Google Scholar 

  • Liu Y, He Q, Cheng P (2003) Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci 60:2131–2138

    PubMed  CAS  Google Scholar 

  • Madelin MF (1960) Visible changes in the vegetative mycelium of Coprinus lapopus Fr. at the time of fruiting. Trans Br Mycol Sco 43:105–110

    Google Scholar 

  • Madi L, McBride SA, Bailey LA, Ebbole DJ (1997) rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146:499–508

    PubMed  CAS  Google Scholar 

  • Maheshwari R (1991) Microcycle conidiation and its genetic basis in Neurospora crassa. J Gen Microbiol 137:2103–2115

    PubMed  CAS  Google Scholar 

  • Maheshwari R (1999) Microconidia of Neurospora crassa. Fungal Genet Biol 26:1–18

    PubMed  CAS  Google Scholar 

  • Marchisio VF, Airaude D (2001) Temporal trends of the airborne fungi and their functional relations with the environment in a suburban site. Mycologia 93:831–840

    Google Scholar 

  • Marshall MA, Timberlake WE (1991) Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11:55–62

    PubMed  CAS  Google Scholar 

  • Mayorga ME, Timberlake WE (1990) Isolation and molecular characterization of the Aspergillus nidulans wA gene. Genetics 126:73–79

    PubMed  CAS  Google Scholar 

  • Mayorga ME, Timberlake WE (1992) The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol Gen Genet 235:205–212

    PubMed  CAS  Google Scholar 

  • Melin P, Schnürer J, Wagner EGH (1999) Changes in Aspergillus nidulans gene expression induced by bafilomycin, a Streptomyces-produced antibiotic. Microbiology 145:1115–1122

    PubMed  CAS  Google Scholar 

  • Melin P, Schnurer J, Wagner EG (2003) Characterization of phiA, a gene essential for phialide development in Aspergillus nidulans. Fungal Genet Biol 40:234–241

    PubMed  CAS  Google Scholar 

  • Michan S, Lledias F, Hansberg W (2003) Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryot Cell 2:798–808

    PubMed  CAS  Google Scholar 

  • Miller KY, Toennis TM, Adams TH, Miller BL (1991) Isolation and transcriptional characterization of a morphological modifier: the Aspergillus nidulans stunted (stuA) gene. Mol Gen Genet 227:285–292

    PubMed  CAS  Google Scholar 

  • Miller KY, Wu J, Miller BL (1992) StuA is required for cell pattern formation in Aspergillus. Genes Dev 6:1770–1782

    PubMed  CAS  Google Scholar 

  • Mims CW, Richardson EA, Timberlake WE (1988) Ultrastructural analysis of conidiophore development in the fungus Aspergillus nidulans using freeze-substitution. Protoplasma 44:132–141

    Google Scholar 

  • Mirabito PM, Adams TH, Timberlake WE (1989) Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57:859–868

    PubMed  CAS  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is requiredfor conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    PubMed  CAS  Google Scholar 

  • Moore D (1998) Fungal morphogenesis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Murray TD, Walter CC (1991) Influence of pH and matric potential on sporulation of Cephalosporium gramineum. Phytopathology 81:79–84

    Google Scholar 

  • Navarro RE, Aguirre J (1998) Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development. J Bacteriol 180:5733–5738

    PubMed  CAS  Google Scholar 

  • Nelson B, Kurischko C, Horecka J, Mody M, Nair P, Pratt L, Zougman A, McBroom LD, Hughes TR, Boone C et al. (2003) RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Mol Biol Chem 14:3782–3803

    CAS  Google Scholar 

  • Nishiura M, Hayashi N, Jwa NS, Lau GW, Hamer JE, Hasebe A (2000) Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol Plant Microb Interact 13:892–894

    Google Scholar 

  • Nowrousian M, Duffield GE, Loros JJ, Dunlap JC (2003) The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 164:923–933

    PubMed  CAS  Google Scholar 

  • Ohara T, Tsuge T (2004) FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. Eukaryot Cell 3:1412–1422

    PubMed  CAS  Google Scholar 

  • Ohara T, Inoue I, Namiki F, Kunoh H, Tsuge T (2004) REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics 166:113–124

    PubMed  CAS  Google Scholar 

  • Oliver PTP (1972) Conidiophore and spore development in Aspergillus nidulans. J Gen Microbiol 73:45–54

    PubMed  CAS  Google Scholar 

  • Parra R, Aldred D, Archer DB, Magan N (2004) Water activity, solute and temperature modify growth and spore production of wild type and genetically engineered Aspergillus niger strains. Enz Microb Technol 35:232–237

    CAS  Google Scholar 

  • Pascon RC, Miller BL (2000) Morphogenesis in Aspergillus nidulans requires Dopey (DopA), a member of a novel family of leucine zipper-like proteins conserved from yeast to humans. Mol Microbiol 36:1250–1264

    PubMed  CAS  Google Scholar 

  • Peraza L, Hansberg W (2002) Neurospora crassa catalases, singlet oxygen and cell differentiation. Biol Chem 383:569–575

    PubMed  CAS  Google Scholar 

  • Perkins DD, Barry EG (1977) The cytogenetics of Neurospora. Adv Genet 19:133–285

    PubMed  CAS  Google Scholar 

  • Pöggeler S (2002) Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr Genet 42:153–160

    PubMed  Google Scholar 

  • Polak E (1999) Asexual sporulation in the basidiomycete Coprinus cinereus. PhD Thesis, ETH Zurich, Zurich, Switzerland

    Google Scholar 

  • Polak E, Hermann R, Kües U, Aebi M (1997a) Asexual sporulation in Coprinus cinereus: structure and development of oidiophores and oidia in an Amut Bmut homokaryon. Fungal Genet Biol 22:112–126

    PubMed  Google Scholar 

  • Polak E, Kües U, Aebi M (1997b) Replica plating of Coprinus cinereus colonies using asexual spores. Fungal Genet Newslett 44:45–46

    Google Scholar 

  • Polak E, Aebi M, Kües U (2001) Morphological variations in oidium formation in the basidiomycete Coprinus cinereus. Mycol Res 105:603–610

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    PubMed  CAS  Google Scholar 

  • Prade R, Timberlake WE (1993) The Aspergillus nidulans brlA regulatory locus consists of two overlapping transcription units that are individually required for conidiophore development. EMBO J 12:2439–2447

    PubMed  CAS  Google Scholar 

  • Prade RA, Timberlake WE (1994) The Penicillium chrysogenum and Aspergillus nidulans wetA developmental regulatory genes are functionally equivalent. Mol Gen Genet 244:539–547

    PubMed  CAS  Google Scholar 

  • Rao PS, Niederpruem DJ (1969) Carbohydrate metabolism during morphogenesis of Coprinus lagopus. J Bacteriol 100:1222–1228

    PubMed  CAS  Google Scholar 

  • Rerngsamran P, Murphy MB, Doyle SA, Ebbole DJ (2005) Fluffy, the major regulator of conidiationin Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Mol Microbiol 56:282–297

    PubMed  CAS  Google Scholar 

  • Roberts AN, Yanofsky C (1989) Genes expressed during conidiation in Neurospora crassa — characterization of con-8. Nucleic Acids Res 17:197–214

    PubMed  CAS  Google Scholar 

  • Roberts AN, Berlin V, Hager KM, Yanofsky C (1988) Molecular analysis of a Neurospora crassa gene expressed during conidiation. Mol Cell Biol 8:2411–2418

    PubMed  CAS  Google Scholar 

  • Roncal T, Ugalde U (2003) Conidiation induction in Penicillium. Res Microbiol 154:539–546

    PubMed  CAS  Google Scholar 

  • Rosén S, Yu J-H, Adams TH (1999) The Aspergillus nidulans sfaD gene encodes a G protein β subunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600

    PubMed  Google Scholar 

  • Rossier C, Oulevey N, Turian G (1973) Electron microscopy of selectively stimulated microconidiogenesis in wild type Neurospora crassa. Arch Microbiol 91:345–353

    CAS  Google Scholar 

  • Ruoff P, Slewa I (2002) Circadian period lengths of lipid synthesis mutants (cel, chol-1) of Neurospora show defective temperature, but intact pH-compensation. Chronobiol Int 19:517–529

    PubMed  CAS  Google Scholar 

  • Ruoff P, Behzadi A, Hauglid M, Vinsjevik M, Havas H (2000) pH homeostasis of the circadian sporulation rhythm in clock mutants of Neurospora crassa. Chronobiol Int 17:733–750

    PubMed  CAS  Google Scholar 

  • Russo VEA, Pandit NN (1992) Development in Neurospora crassa. In: Russo VEA, Brody S, Cove D, Ottolenghi S (eds) Development. The molecular genetic approach. Springer, Berlin Heidelberg New York, pp 88–102

    Google Scholar 

  • Sage RF (2002) How terrestrial organisms sense, signal, and respond to carbon dioxide. Int Comp Biol 42:469–480

    Google Scholar 

  • Scherer M, Fischer R (1998) Purification and characterization of laccase II of Aspergillus nidulans. Arch Microbiol 170:78–84

    PubMed  CAS  Google Scholar 

  • Schier N, Fischer R (2002) The Aspergillus nidulans cyclin PclA accumulates in the nucleus and interacts with the central cell cycle regulator NimX(Cdc2). FEBS Lett 523:143–146

    PubMed  CAS  Google Scholar 

  • Schier N, Liese R, Fischer R (2001) A pcl-like cyclin of Aspergillus nidulans is transcriptionally activated by developmental regulators and is involved in sporulation. Mol Cell Biol 21:4075–4088

    PubMed  CAS  Google Scholar 

  • Schuren FHJ (1999) Atypical interactions between thn and wild-type mycelia of Schizophyllum commune. Mycol Res 103:1540–1544

    Google Scholar 

  • Schuurs TA, Dalstra HJP, Scheer JMJ, Wessels JGH (1998) Positioning of nuclei in the secondary mycelium of Schizophyllum commune in relation to differential gene expression. Fungal Genet Biol 23:150–161

    PubMed  CAS  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    PubMed  CAS  Google Scholar 

  • Seo JA, Han KH, Yu JH (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53:1611–1623

    PubMed  CAS  Google Scholar 

  • Sewall TC (1994) Cellular effects of misscheduled brlA, abaA, and wetA expression in Aspergillus nidulans. Can J Microbiol 40:1035–1042

    PubMed  CAS  Google Scholar 

  • Sewall TC, Mims CW, Timberlake WE (1990) Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wet) mutant strains. Dev Biol 138:499–508

    PubMed  CAS  Google Scholar 

  • Shi Z, Leung H (1995) Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol Plant Microb Interact 8:949–959

    CAS  Google Scholar 

  • Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:591–600

    PubMed  CAS  Google Scholar 

  • Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ (2001) vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol 32:169–181

    PubMed  CAS  Google Scholar 

  • Siegel RW, Matsuyama SS, Urey JC (1968) Induced macroconidia formation in Neurospora crassa. Experientia 24:1179–1181

    PubMed  CAS  Google Scholar 

  • Skromne I, Sánchez O, Aguirre J (1995) Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology 141:21–28

    PubMed  CAS  Google Scholar 

  • Smart MG, Howard KM, Bothast RJ (1992) Effect of carbondioxide on sporulation of Alternaria crassa and Alternaria cassiae. Mycopathologia 118:167–171

    Google Scholar 

  • Som T, Kolaparthi VSR (1994) Developmental decisions in Aspergillus nidulans are modulated by ras activity. Mol Cell Biol 14:5333–5348

    PubMed  CAS  Google Scholar 

  • Springer ML (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. Bioessays 15:365–374

    PubMed  CAS  Google Scholar 

  • Springer ML, Yanofsky C (1989) A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev 3:559–571

    PubMed  CAS  Google Scholar 

  • Stennett PJ, Begss PJ (2004) Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. Int J Biometeorol 49:98–105

    PubMed  CAS  Google Scholar 

  • Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991

    PubMed  CAS  Google Scholar 

  • Stringer MA, Timberlake WE (1994) dewA encodes a fungal hydrophobin component of the Aspergillus spore wall. Mol Microbiol 16:33–44

    Google Scholar 

  • Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev 5:1161–1171

    PubMed  CAS  Google Scholar 

  • Suelmann R, Sievers N, Galetzka D, Robertson L, Timberlake WE, Fischer R (1998) Increased nuclear traffic chaos in hyphae of apsB mutants of Aspergillus nidulans: molecular characterizationof apsB and in vivo observation of nuclear behaviour. Mol Microbiol 30:831–842

    PubMed  CAS  Google Scholar 

  • Tan KK (1974) Red-far-red reversible photoreaction in the recovery form blue-light inhibition of sporulation in Botrytis cinerea. J Gen Microbiol 82:201–202

    Google Scholar 

  • Terashima K, Yuki K, Muraguchi H, Akiyama M, Kamada T (2005) The dst1 gene involved in mushroom photo-morphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light. Genetics 117:101–108

    Google Scholar 

  • Timberlake WE (1993) Translational triggering and feedback fixation in the control of fungal development. Plant Cell 5:1453–1460

    PubMed  CAS  Google Scholar 

  • Todd RB, Greenhalgh JR, Hynes MJ, Andrianopoulos A (2003) TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol Microbiol 48:85–94

    PubMed  CAS  Google Scholar 

  • Troutt C, Levetin E (2001) Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. Int J Biometeorol 45:64–74

    PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2004a) Endogenous lipogenic regulators of spore balance in Aspergillus nidulans. Eukaryot Cell 3:1398–1411

    PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Zarnowski R, Keller NP (2004b) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353

    PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821

    PubMed  CAS  Google Scholar 

  • Tuncher A, Reinke H, Martic G, Caruso ML, Brakhage AA (2004) A basic-region helix-loop-helix protein-encoding gene (devR) involved in the development of Aspergillus nidulans. Mol Microbiol 52:364–372

    Google Scholar 

  • Tymon AM, Kües U, Richardson WVJ, Casselton LA (1992) A fungal mating type protein that regulates sexual and asexual development contains a POU-related domain. EMBO J 11:1805–1813

    PubMed  CAS  Google Scholar 

  • Tzung KW, William RM, Scherer S, Federspiel N, Jones T, Hansen N, Bivolarevic V, Huizar L, Komp C, Surzycki R et al. (2001) Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci USA 98:3249–3253

    PubMed  CAS  Google Scholar 

  • Ulevicius V, Peciulyte D, Lugauskas A, Andriejauskiene J (2004) Field study on changes in viability of airborne fungal propagules exposed to UV radiation. Environ Toxicol 19:437–441

    PubMed  CAS  Google Scholar 

  • Van Maanen A, Gourbière F (2000) Balance between colonization and fructification in fungal dynamics control: a case study of Lophodermium pinastri on Pinus sylvestris needles. Mycol Res 104:587–594

    Google Scholar 

  • Van Maanen A, Debouzie D, Gourbière F (2000) Distribution of three fungi colonizing fallen Pinus sylvestris needles along altitudinal transects. Mycol Res 104:1133–1138

    Google Scholar 

  • Veith D, Scherr N, Efimov VP, Fischer R (2005) Role of the spindle-pole body protein ApsB and the cortex protein ApsA inmicrotubule organization and nuclear migration in Aspergillus nidulans. J Cell Sci 118:3705–3716

    PubMed  CAS  Google Scholar 

  • Virginia M, Appleyard CL, McPheat WL, Stark MJ (2000) A novel two-component protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr Genet 37:364–372

    PubMed  CAS  Google Scholar 

  • von Arx JA (1981) The genera of fungi sporulating in pure culture. Cramer, Vaduz, Liechtenstein

    Google Scholar 

  • Vossler J (2001) Penicillium marneffei: an emerging fungal pathogen. Clin Microbiol Newslett 23:25–29

    Google Scholar 

  • Walser PJ (1997) Environmental regulation of asexual sporulation and fruit body formation in the basidiomycete Coprinus cinereus. Blue light induction and circadian rhythmicity of asexual sporulation. Nutritional control and carbon repression of oidiation and fruiting. MSc Thesis, ETH Zürich, Zürich, Switzerland

    Google Scholar 

  • Walser PJ, Velagapudi R, Aebi M, Kües U (2003) Extracellular matrix proteins in mushroom development. Recent Res Dev Microbiol 7:381–415

    CAS  Google Scholar 

  • Watling R (1979) The morphology, variation and ecological significance of anamorphs in the Agaricales. In: Kendrick B (ed) The whole fungus, vol 2. National Museum of Natural Sciences, Ottawa, Canada, pp 453–472

    Google Scholar 

  • Wei H, Requena N, Fischer R (2003) The MAPKK-kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47:1577–1589

    PubMed  CAS  Google Scholar 

  • Weismann A (1904) The evolution theory. Arnold, London, UK

    Google Scholar 

  • Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H (2000) Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun 68:3696–3703

    PubMed  Google Scholar 

  • White BT, Yanofsky C (1993) Structural characterization and expression analysis of the Neurospora conidiation gene con-6. Dev Biol 160:254–264

    PubMed  CAS  Google Scholar 

  • Wong S, Fares MA, Zimmermann W, Butler G, Wolfe KH (2003) Evidence from comparative genomics for a complete sexual cycle in the “asexual” pathogenic yeast Candida glabrata. Gen Biol 4:R10

    Google Scholar 

  • Wu J, Miller BL (1997) Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol Cell Biol 17:6191–6201

    PubMed  CAS  Google Scholar 

  • Yamashiro CT, Ebbole DJ, Lee BU, Brown RE, Bourland C, Madi L, Yanosky C (1996) Characterization of rco-1 of Neurospora crassa, a pleiotrophic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol Cell Biol 16:6218–6228

    PubMed  CAS  Google Scholar 

  • Yang Q, Poole SI, Borkovich KA (2002) A G protein β subunit required for sexual and vegetative development and maintenanceofnormalGαprotein levels in Neurospora crassa. Eukaryot Cell 1:378–390

    PubMed  CAS  Google Scholar 

  • Ye XS, Lee S-L, Wolkow TD, McGuire S-L, Hamer JE, Wood GC, Osmani SA (1999) Interaction between developmental and cell cycle regulators is required for morphogenesis in Aspergillus nidulans. EMBO J 18:6994–7001

    PubMed  CAS  Google Scholar 

  • Ying SH, Feng MG (2004) Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. J Appl Microbiol 97:323–331

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Hasunua K (2004) Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem 279:6986–6993

    PubMed  CAS  Google Scholar 

  • Yu J-H, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G-protein signaling to block proliferation and allow development. EMBO J 15:5184–5190

    PubMed  CAS  Google Scholar 

  • Yu J-H, Rosén S, Adams TH (1999) Extragenic suppressors of loss-of-function mutations in the Aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 151:97–105

    PubMed  CAS  Google Scholar 

  • Zhang WM, Sulz M, Bailey KL (2001) Growth and spore production of Plectosporium tabacinum. Can J Bot 79:1297–1306

    Google Scholar 

  • Zhang JX, Fernando WGD, Xue AG (2005) Daily and seasonal spore dispersal by Mycosphaerella pinodes and development of Mycopshaerella blight on field pea. Can J Bot 83:302–310

    Google Scholar 

  • Zuber S, Hynes MJ, Andrianopoulos A (2002) G-protein signaling mediates development at 25°C but has no effect on yeast-like growth at 37°C in the dimorphic fungus Penicillium marneffei. Eukaryot Cell 1:440–447

    PubMed  CAS  Google Scholar 

  • Zuber S, Hynes MJ, Andrianopoulus A (2003) The G-protein α subunit GasC plays a major role in germination in the dimorphic fungus Penicillium marneffei. Genetics 164:487–499

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, R., Kües, U. (2006). Asexual Sporulation in Mycelial Fungi. In: Kües, U., Fischer, R. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28135-5_14

Download citation

Publish with us

Policies and ethics