Skip to main content

Developmental Decisions in Aspergillus nidulans

  • Chapter
  • First Online:
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

The filamentous fungi (fungi) comprise a universal group of heterotrophic eukaryotic microorganisms living as saprophytes, parasites, or symbionts. Throughout the life cycle, in response to the various external and internal cues, fungi constantly make a decision between vegetative growth and (morphological and chemical) development. The basis for fungal vegetative growth is the continued and coordinated expansion of a series of fungal cell tips into a linear or complex structure. When conditions are met, fungi differentiate into a variety of structures including asexual and sexual spores, which are the effective means of genome protection, survival, and propagation. Spores are also the primary means for infecting host organisms for many human and plant pathogenic fungi. Among fungi, the genus Aspergillus represents the most widespread species in our environment that all reproduce asexually by forming long chains of conidiospores (or conidia) radiating from a central structure known as a conidiophore. The genetic model fungus Aspergillus nidulans has served as an excellent system for studying various biological questions, primarily due to the ease of genetic analysis through meiotic (sexual) recombination and the development of sophisticated molecular tools. These properties have provided a better understanding of the mechanisms controlling growth, development, secondary metabolism, and other aspects of cell biology in fungi. Here, we summarize our current understanding of the mechanisms of making asexual and sexual developmental decision in A. nidulans and present simple models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362

    Article  CAS  PubMed  Google Scholar 

  • Adams TH, Deising H, Timberlake WE (1990) brlA requires both zinc fingers to induce development. Mol Cell Biol 10:1815–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams TH, Wieser JK, Yu J-H (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre J (1993) Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol Microbiol 8:211–218

    Article  CAS  PubMed  Google Scholar 

  • Aguirre J, Adams TH, Timberlake WE (1990) Spatial control of developmental regulatory genes in Aspergillus nidulans. Exp Mycol 14:290–293

    Article  CAS  Google Scholar 

  • Ahmed YL, Gerke J, Park H-S, Bayram O, Neumann P, Ni M, Dickmanns A, Kim SC, Yu J-H, Braus GH et al (2013) The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol 11:e1001750

    Article  PubMed  PubMed Central  Google Scholar 

  • Alkahyyat F, Ni M, Kim SC, Yu JH (2015) The WOPR domain protein OsaA orchestrates development in Aspergillus nidulans. PLoS One 10:e0137554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrianopoulos A, Timberlake WE (1991) ATTS, a new and conserved DNA binding domain. Plant Cell 3:747–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrianopoulos A, Timberlake WE (1994) The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14:2503–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aramayo R, Timberlake WE (1993) The Aspergillus nidulans yA gene is regulated by abaA. EMBO J 12:2039–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer DB, Dyer PS (2004) From genomics to post-genomics in Aspergillus. Curr Opin Microbiol 7:499–504

    Article  CAS  PubMed  Google Scholar 

  • Arratia-Quijada J, Sanchez O, Scazzocchio C, Aguirre J (2012) FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. Eukaryot Cell 11:1132–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atoui A, Bao D, Kaur N, Grayburn WS, Calvo AM (2008) Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase. Appl Environ Microbiol 74:3596–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, Fischer R, Calvo AM (2010) Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet Biol 47:962–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelrod DE, Gealt M, Pastushok M (1973) Gene control of developmental competence in Aspergillus nidulans. Dev Biol 34:9–15

    Article  CAS  PubMed  Google Scholar 

  • Bahn YS, Xue CY, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    Article  CAS  PubMed  Google Scholar 

  • Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24

    Article  CAS  PubMed  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP, Yu J-H et al (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  CAS  PubMed  Google Scholar 

  • Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    Article  CAS  PubMed  Google Scholar 

  • Bayram O, Bayram OS, Ahmed YL, Maruyama J, Valerius O, Rizzoli SO, Ficner R, Irniger S, Braus GH (2012) The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet 8:e1002816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram O, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH (2016) Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 87:30–53

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Fernholz FA, Lee LS (1978) Effect of light on aflatoxins, anthraquinones, and sclerotia in Aspergillus flavus and A. parasiticus. Mycologia 70:104–116

    Article  CAS  PubMed  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Boylan MT, Mirabito PM, Willett CE, Zimmerman CR, Timberlake WE (1987) Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol Cell Biol 7:3113–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braus GH, Irniger S, Bayram O (2010) Fungal development and the COP9 signalosome. Curr Opin Microbiol 13:672–676

    Article  CAS  PubMed  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Busby TM, Miller KY, Miller BL (1996) Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics 143:155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49:717–730

    Article  CAS  PubMed  Google Scholar 

  • Busch S, Schwier EU, Nahlik K, Bayram O, Helmstaedt K, Draht OW, Krappmann S, Valerius O, Lipscomb WN, Braus GH (2007) An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc Natl Acad Sci U S A 104:8089–8094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo AM, Bok J, Brooks W, Keller NP (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casselton L, Zolan M (2002) The art and design of genetic screens: filamentous fungi. Nat Rev Genet 3:683–697

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Timberlake WE (1993) Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133:29–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang MH, Chae KS, Han DM, Jahng KY (2004) The GanB Galpha-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clutterbuck AJ (1969) A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • d’Enfert C (1997) Fungal spore germination: Insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21:163–172

    Article  Google Scholar 

  • D’Souza CA, Lee BN, Adams TH (2001) Characterization of the role of the FluG protein in asexual development of Aspergillus nidulans. Genetics 158:1027–1036

    PubMed  PubMed Central  Google Scholar 

  • De Souza CP, Hashmi SB, Osmani AH, Andrews P, Ringelberg CS, Dunlap JC, Osmani SA (2013) Functional analysis of the Aspergillus nidulans kinome. PLoS One 8:e58008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duran RM, Cary JW, Calvo AM (2007) Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol 73:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Dutton JR, Johns S, Miller BL (1997) StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J 16:5710–5721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer PS, O’Gorman CM (2011) A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol 14:649–654

    Article  PubMed  Google Scholar 

  • Dyer PS, O’Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 36:165–192

    Article  CAS  PubMed  Google Scholar 

  • Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology 149:2301–2303

    Article  CAS  PubMed  Google Scholar 

  • Ebbole DJ (2010) The conidium. In: Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 577–590

    Google Scholar 

  • Etxebeste O, Herrero-Garcia E, Araujo-Bazan L, Rodriguez-Urra AB, Garzia A, Ugalde U, Espeso EA (2009) The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol 73:775–789

    Article  CAS  PubMed  Google Scholar 

  • Etxebeste O, Garzia A, Espeso EA, Ugalde U (2010) Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 18:569–576

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Garzia A, Etxebeste O, Herrero-Garcia E, Fischer R, Espeso EA, Ugalde U (2009) Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Mol Microbiol 71:172–184

    Article  CAS  PubMed  Google Scholar 

  • Garzia A, Etxebeste O, Herrero-Garcia E, Ugalde U, Espeso EA (2010) The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Mol Microbiol 75:1314–1324

    Article  CAS  PubMed  Google Scholar 

  • Geiser DM (2009) Sexual structures in Aspergillus: morphology, importance and genomics. Med Mycol 47(Suppl 1):S21–S26

    Article  CAS  PubMed  Google Scholar 

  • Grahl N, Shepardson KM, Chung D, Cramer RA (2012) Hypoxia and fungal pathogenesis: to air or not to air? Eukaryot Cell 11:560–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugnani HC (2003) Ecology and taxonomy of pathogenic aspergilli. Front Biosci 8:s346–s357

    Article  CAS  PubMed  Google Scholar 

  • Han KH (2009) Molecular Genetics of Emericella nidulans Sexual Development. Mycobiology 37:171–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Han S, Adams TH (2001) Complex control of the developmental regulatory locus brlA in Aspergillus nidulans. Mol Gen Genomics 266:260–270

    Article  CAS  Google Scholar 

  • Han DM, Han YJ, Lee YH, Jahng KY, Jahng SH, Chae KS (1990) Inhibitory conditions of asexual development and their application for the screening of mutants defective in sexual development. Kor J Mycol 18:225–232

    Google Scholar 

  • Han S, Navarro J, Greve RA, Adams TH (1993) Translational repression of brlA expression prevents premature development in Aspergillus. EMBO J 12:2449–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han DM, Han YJ, Kim JH, Jahng KY, Chung YS, Chung JH, Chae KS (1994) Isolation and characterization of NSD mutants in Aspergillus nidulans. Kor J Mycol 22:1–7

    Google Scholar 

  • Han KH, Cheong SS, Hoe HS, Han DM (1998) Characterization of several NSD mutants of Aspergillus nidulans that never undergo sexual development. Kor J Genet 20:257–264

    CAS  Google Scholar 

  • Han KH, Han KY, Yu JH, Chae KS, Jahng KY, Han DM (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41:299–309

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Lee DB, Kim JH, Kim MS, Han KY, Kim WS, Park YS, Kim HB, Han DM (2003) Environmental factors affecting development of Aspergillus nidulans. J Microbiol 41:34–40

    CAS  Google Scholar 

  • Han KH, Seo JA, Yu JH (2004a) A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51:1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Seo JA, Yu JH (2004b) Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signalling. Mol Microbiol 53:529–540

    Article  CAS  PubMed  Google Scholar 

  • Harris SD (2006) Cell polarity in filamentous. Int Rev Cytol 251:41–77

    Article  CAS  PubMed  Google Scholar 

  • Harris SD (2008) Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 100:823–832

    Article  PubMed  Google Scholar 

  • Harris SD (2011) Hyphal morphogenesis: an evolutionary perspective. Fungal Biol 115:475–484

    Article  PubMed  Google Scholar 

  • Hicks JK, Yu J-H, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J 16:4916–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann B, Wanke C, Lapaglia SK, Braus GH (2000) c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans. Mol Microbiol 37:28–41

    Article  CAS  PubMed  Google Scholar 

  • Ichinomiya M, Ohta A, Horiuchi H (2005) Expression of asexual developmental regulator gene abaA is affected in the double mutants of classes I and II chitin synthase genes, chsC and chsA, of Aspergillus nidulans. Curr Genet 48:171–183

    Article  CAS  PubMed  Google Scholar 

  • Jun SC, Lee SJ, Park HJ, Kang JY, Leem YE, Yang TH, Chang MH, Kim JM, Jang SH, Kim HG et al (2011) The MpkB MAP kinase plays a role in post-karyogamy processes as well as in hyphal anastomosis during sexual development in Aspergillus nidulans. J Microbiol 49:418–430

    Article  CAS  PubMed  Google Scholar 

  • Kafer E (1965) Origins of translocations in Aspergillus nidulans. Genetics 52:217–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JY, Chun J, Jun SC, Han DM, Chae KS, Jahng KY (2013) The MpkB MAP kinase plays a role in autolysis and conidiation of Aspergillus nidulans. Fungal Genet Biol 61:42–49

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki L, Sanchez O, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – From biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Han K, Kim K, Han D, Jahng K, Chae K (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Chae KS, Han KH, Han DM (2009) The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics 182:771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Yu YM, Maeng PJ (2017) Differential control of asexual development and sterigmatocystin biosynthesis by a novel regulator in Aspergillus nidulans. Sci Rep 7:46340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Q, Wang L, Liu Z, Kwon N-J, Kim SC, Yu J-H (2013) Gbeta-like CpcB plays a crucial role for growth and development of Aspergillus nidulans and Aspergillus fumigatus. PLoS One 8:e70355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs Z, Szarka M, Kovacs S, Boczonadi I, Emri T, Abe K, Pocsi I, Pusztahelyi T (2013) Effect of cell wall integrity stress and RlmA transcription factor on asexual development and autolysis in Aspergillus nidulans. Fungal Genet Biol 54:1–14

    Article  CAS  PubMed  Google Scholar 

  • Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Muller WH, Dijksterhuis J, Wosten HA (2013) Development in Aspergillus. Stud Mycol 74:1–29

    Article  CAS  PubMed  Google Scholar 

  • Kwon N-J, Garzia A, Espeso EA, Ugalde U, Yu J-H (2010a) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219

    Article  CAS  PubMed  Google Scholar 

  • Kwon N-J, Shin K-S, Yu J-H (2010b) Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol 47:981–993

    Article  CAS  PubMed  Google Scholar 

  • Kwon N-J, Park H-S, Jung S, Kim SC, Yu J-H (2012) The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus. Eukaryot Cell 11:1399–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafon A, Seo JA, Han KH, Yu J-H, d’Enfert C (2005) The heterotrimeric G-protein GanB(alpha)-SfaD(beta)-GpgA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Rojas F, Sanchez O, Kawasaki L, Aguirre J (2011) Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80:436–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BN, Adams TH (1994) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651

    Article  CAS  PubMed  Google Scholar 

  • Lee BN, Adams TH (1996) FluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. EMBO J 15:299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Kim LH, Kim HE, Park JS, Han KH, Han DM (2013) A putative APSES transcription factor is necessary for normal growth and development of Aspergillus nidulans. J Microbiol 51:800–806

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Kwon NJ, Choi JM, Lee IS, Jung S, Yu JH (2014) NsdD is a key repressor of asexual development in Aspergillus nidulans. Genetics 197:159–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee MK, Kwon NJ, Lee IS, Jung S, Kim SC, Yu JH (2016) Negative regulation and developmental competence in Aspergillus. Sci Rep 6:28874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518

    Article  CAS  PubMed  Google Scholar 

  • Marshall MA, Timberlake WE (1991) Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli S (1976) Conidiation of Aspergillus nidulans in submerged culture. Trans Br Mvcol Soc 67(1):121–128

    Article  Google Scholar 

  • Mirabito PM, Adams TH, Timberlake WE (1989) Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57:859–868

    Article  CAS  PubMed  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Morton AG (1961) The induction of sporulation in mould fungi. Proc R Soc London Ser B 153:548–569

    Article  CAS  Google Scholar 

  • Nahlik K, Dumkow M, Bayram O, Helmstaedt K, Busch S, Valerius O, Gerke J, Hoppert M, Schwier E, Opitz L et al (2010) The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development. Mol Microbiol 78:964–979

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi – are we expecting too much? Front Microbiol 5:75

    PubMed  PubMed Central  Google Scholar 

  • Ni M, Yu JH (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2:e970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ni M, Gao N, Kwon N-J, Shin K-S, Yu J-H (2010) Regulation of Aspergillus Conidiation. In: Cellular and Molecular Biology of Filamentous Fungi, pp 559–576

    Chapter  Google Scholar 

  • Noble LM, Andrianopoulos A (2013) Reproductive competence: a recurrent logic module in eukaryotic development. Proc R Soc B Biol Sci 280

    Google Scholar 

  • Oiartzabal-Arano E, Garzia A, Gorostidi A, Ugalde U, Espeso EA, Etxebeste O (2015) Beyond asexual development: modifications in the gene expression profile caused by the absence of the Aspergillus nidulans transcription factor FlbB. Genetics 199:1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer DA, Thompson JK, Li L, Prat A, Wang P (2006) Gib2, a novel Gbeta-like/RACK1 homolog, functions as a Gbeta subunit in cAMP signaling and is essential in Cryptococcus neoformans. J Biol Chem 281:32596–32605

    Article  CAS  PubMed  Google Scholar 

  • Paoletti M, Seymour FA, Alcocer MJ, Kaur N, Calvo AM, Archer DB, Dyer PS (2007) Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol 17:1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677

    Article  CAS  PubMed  Google Scholar 

  • Park BC, Park YH, Park HM (2003) Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans. FEMS Microbiol Lett 220:241–246

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Ni M, Jeong KC, Kim YH, Yu JH (2012) The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7:e45935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H-S, Nam TY, Han KH, Kim SC, Yu J-H (2014) VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9:e89883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park HS, Yu YM, Lee MK, Maeng PJ, Kim SC, Yu JH (2015) Velvet-mediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci Rep 5:10199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Jun SC, Han KH, Hong SB, Yu JH (2017) Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. Adv Appl Microbiol 100:161–202

    Article  PubMed  Google Scholar 

  • Prade RA, Timberlake WE (1993) The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. EMBO J 12:2439–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    Article  CAS  PubMed  Google Scholar 

  • Purschwitz J, Muller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol Gen Genomics 281:35–42

    Article  CAS  Google Scholar 

  • Rai JN, Tewari JP, Sinha AK (1967) Effect of environmental conditions on sclerotia and cleistothecia production in Aspergillus. Mycopathol Mycol Appl 31:209–224

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM (2013) The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 8:e74122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauscher S, Pacher S, Hedtke M, Kniemeyer O, Fischer R (2016) A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions. Mol Microbiol 99:909–924

    Article  CAS  PubMed  Google Scholar 

  • Riquelme M (2013) Tip Growth in Filamentous Fungi: A Road Trip to the Apex. Annual Rev Microbiol 67:587–609

    Article  CAS  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Muller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Urra AB, Jimenez C, Nieto MI, Rodriguez J, Hayashi H, Ugalde U (2012) Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem Biol 7:599–606

    Article  CAS  PubMed  Google Scholar 

  • Rohrig J, Yu Z, Chae KS, Kim JH, Han KH, Fischer R (2017) The Aspergillus nidulans Velvet-interacting protein, VipA, is involved in light-stimulated heme biosynthesis. Mol Microbiol 105:825–838

    Article  PubMed  CAS  Google Scholar 

  • Rosen S, Yu J-H, Adams TH (1999) The Aspergillus nidulans sfaD gene encodes a G protein beta subunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruger-Herreros C, Rodriguez-Romero J, Fernandez-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CH, Perrone G, Seifert KA, Susca A, Tanney JB et al (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarikaya Bayram O, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6:e1001226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena RK, Sinha U (1973) Conidiation of Aspergillus nidulans in submerged liquid culture. Gen Appl Microbiol 19:141–146

    Article  Google Scholar 

  • Scherer M, Fischer R (1998) Purification and characterization of laccase II of Aspergillus nidulans. Arch Microbiol 170:78–84

    Article  CAS  PubMed  Google Scholar 

  • Schoustra S, Rundle HD, Dali R, Kassen R (2010) Fitness-associated sexual reproduction in a filamentous fungus. Curr Biol 20:1350–1355

    Article  CAS  PubMed  Google Scholar 

  • Seo JA, Guan Y, Yu JH (2003) Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165:1083–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JA, Han KH, Yu JH (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Seo JA, Han KH, Yu JH (2005) Multiple roles of a heterotrimeric G-protein gamma-subunit in governing growth and development of Aspergillus nidulans. Genetics 171:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JA, Guan Y, Yu JH (2006) FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172:1535–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewall TC, Mims CW, Timberlake WE (1990a) abaA controls phialide differentiation in Aspergillus nidulans. Plant Cell 2:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewall TC, Mims CW, Timberlake WE (1990b) Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev Biol 138:499–508

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:591–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si H, Rittenour WR, Xu K, Nicksarlian M, Calvo AM, Harris SD (2012) Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol Microbiol 85:252–270

    Article  CAS  PubMed  Google Scholar 

  • Skromne I, Sanchez O, Aguirre J (1995) Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology 141:21–28

    Article  CAS  PubMed  Google Scholar 

  • Sohn KT, Yoon KS (2002) Ultrastructural Study on the Cleistothecium Development in Aspergillus nidulans. Mycobiology 30:117–127

    Article  Google Scholar 

  • Song MH, Nah JY, Han YS, Han DM, Chae KS (2001) Promotion of conidial head formation in Aspergillus oryzae by a salt. Biotechnol Lett 23:689–691

    Article  CAS  Google Scholar 

  • Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkorper. Eukaryot Cell 6:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 63:242–255

    Article  CAS  PubMed  Google Scholar 

  • Timberlake WE (1990) Molecular genetics of Aspergillus development. Annu Rev Genet 24:5–36

    Article  CAS  PubMed  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85:1259–1277

    Article  CAS  PubMed  Google Scholar 

  • Todd RB, Davis MA, Hynes MJ (2007) Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. Nat Protoc 2:822–830

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Lennonb JT (2015) Fungal Traits That Drive Ecosystem Dynamics on Land. Microbiol Mol Biol R 79:243–262

    Article  CAS  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353

    Article  CAS  PubMed  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821

    Article  CAS  PubMed  Google Scholar 

  • Vallim MA, Miller KY, Miller BL (2000) Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn2+ finger transcription factor required for sexual reproduction. Mol Microbiol 36:290–301

    Article  CAS  PubMed  Google Scholar 

  • van Burik JAH, Magee PT (2001) Aspects of fungal pathogenesis in humans. Annu Rev Microbiol 55:743–772

    Article  PubMed  Google Scholar 

  • Vienken K, Fischer R (2006) The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol Microbiol 61:544–554

    Article  CAS  PubMed  Google Scholar 

  • Vienken K, Scherer M, Fischer R (2005) The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169:619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Requena N, Fischer R (2003) The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47:1577–1588

    Article  CAS  PubMed  Google Scholar 

  • Wieser J, Lee BN, Fondon J III, Adams TH (1994) Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet 27:62–69

    Article  CAS  PubMed  Google Scholar 

  • Wieser J, Yu J-H, Adams TH (1997) Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Curr Genet 32:218–224

    Article  CAS  PubMed  Google Scholar 

  • Wong KH, Hynes MJ, Todd RB, Davis MA (2009) Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. Microbiology 155:3868–3880

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Miller BL (1997) Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol Cell Biol 17:6191–6201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JR (2000) Map kinases in fungal pathogens. Fungal Genet Biol 31:137–152

    Article  CAS  PubMed  Google Scholar 

  • Yager LN, Kurtz MB, Champe SP (1982) Temperature-shift analysis of conidial development in Aspergillus nidulans. Dev Biol 93:92–103

    Article  CAS  PubMed  Google Scholar 

  • Yu J-H (2006) Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44:145–154

    CAS  PubMed  Google Scholar 

  • Yu J-H (2010) Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology 38:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JH, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15:5184–5190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonneveld BJM (1988) Effect of carbon dioxide on fruiting in Aspergillus nidulans. Trans Br Mycol Soc 91:625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work by HSP and MJK was supported by the National Research Foundation of Korea (NRF) grant to HSP funded by the Korean government (MSIP: No. 2016010945). The work by KHH was supported by the Intelligent Synthetic Biology Center of Global Frontier Projects (2015M3A6A8065838) and by Basic Science Research Program through NRF (NRF-2017R1D1A3B06035312) funded by Korean government. The work by MKL and JHY was supported by the Intelligent Synthetic Biology Center of Global Frontier Project (2011-0031955) funded by the Ministry of Education, Science and Technology grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyuk Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, HS., Lee, MK., Han, KH., Kim, MJ., Yu, JH. (2019). Developmental Decisions in Aspergillus nidulans . In: Hoffmeister, D., Gressler, M. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-05448-9_4

Download citation

Publish with us

Policies and ethics