Skip to main content

Carbon Metabolism, Lipid Composition and Metabolism in Arbuscular Mycorrhizal Fungi

  • Chapter
In Vitro Culture of Mycorrhizas

Part of the book series: Soil Biology ((SOILBIOL,volume 4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antibus R, Sinsabaugh RL (1993) The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza 3:137–144

    Article  CAS  Google Scholar 

  • Bago B, Bécard G (2002) Bases of the obligate biotrophy of arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 33–48

    Google Scholar 

  • Bago B, Pfeffer PE, Douds DD, Brouilette J, Bécard G, Shachar-Hill Y (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–271

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Shachar-Hill Y, Pfeffer PE (2000) Dissecting carbon pathways in arbuscular mycorrhizas with NMR spectroscopy. In: Podila GK, Douds DD Jr (eds) Current advances in mycorrhizae research. APS Press, St Paul, pp 111–126

    Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002a) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Plant Soil 244:189–197

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2002b) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002c) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  PubMed  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Beilby JP (1980) Fatty acid and sterol composition of ungerminated spores of the vesiculararbuscular mycorrhizal fungus, Acaulospora laevis. Lipids 15:949–952

    CAS  Google Scholar 

  • Beilby JP (1983) Effects of inhibitors on early protein, RNA, and lipid synthesis in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 29:596–601

    Article  PubMed  CAS  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular arbuscular mycorrhizal fungus, Glomus caledonius: changes in neutral and polar lipids. J Lipid Res 21:739–750

    PubMed  CAS  Google Scholar 

  • Bentivenga SP, Morton JB (1994) Stability and heritability of fatty acid methyl ester profiles of glomalean endomycorrhizal fungi. Mycol Res 98:1419–1426

    CAS  Google Scholar 

  • Bentivenga SP, Morton JB (1996) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. ProcNatl Acad Sci USA 93:659–5662

    Google Scholar 

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto-and endomycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 175–195

    Google Scholar 

  • Burleigh SH (2001) Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas. Plant Sci 160:899–904

    Article  PubMed  CAS  Google Scholar 

  • Cooper KM, Lösel DM (1978) Lipid physiology of vesicular-arbuscular mycorrhiza I. Composition of lipids of onion, clover and ryegrass infected with Glomus mosseae. New Phytol 80:143–151

    CAS  Google Scholar 

  • Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-endophyte transfer in a vesicular-arbusular mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 297–311

    Google Scholar 

  • Declerck S, Cranenbrouck S, Dalpé Y, Séguin S, Grandmougin-Ferjani A, Fontaine J, Sancholle M (2000) Glomus proliferum sp. nov.: a description based on morphological, biochemical, molecular and monoxenic cultivation data. Mycologia 92:1178–1187

    Google Scholar 

  • Delp G, Timonen S, Rosewarne GM, Barker SJ, Smith S (2003) Differential expression of Glomus intraradices genes in external mycelium and mycorrhizal roots of tomato and barley. Mycol Res 107:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Disch A, Rohmer M (1998) On the absence of the glyceraldehydes 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol Lett 168:201–208

    Article  PubMed  CAS  Google Scholar 

  • Douds DD Jr, Pfeffer PE, Shachar-Hill Y (2000) Application of in vitro methods to study carbon uptake and transport by AM fungi. Plant Soil 226:255–261

    CAS  Google Scholar 

  • Fontaine J (2001) Etude du métabolisme lipidique d’un champignon endomycorhizien à vésicules et arbuscules: Glomus intraradices. PhD Thesis, Université du Littoral Côte d’Opale, Calais

    Google Scholar 

  • Fontaine J, Grandmougin-Ferjani A, Sancholle M (2001a) Métabolisme lipidique du champignon endomycorhizien: Glomus intraradices. C R Acad Sci Paris 324:847–853

    PubMed  CAS  Google Scholar 

  • Fontaine J, Grandmougin-Ferjani A, Hartmann MA, Sancholle M (2001b) Sterol biosynthesis by the arbuscular mycorrhizal fungus Glomus intraradices. Lipids 36:1357–1363

    PubMed  CAS  Google Scholar 

  • Fontaine J, Grandmougin-Ferjani A, Glorian V, Durand R (2004) 24-methyl/methylene sterols increase in monoxenic roots after colonization by arbuscular mycorrhizal fungi. New Phytol 163:159–167

    Article  CAS  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Franken P (1999) Trends in molecular studies of AM fungi. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 37–47

    Google Scholar 

  • Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517–523

    Article  CAS  Google Scholar 

  • Frey B, Buse HR, Schüepp H (1992) Identification of ergosterol in vesicular-arbuscular mycorrhizae. Biol Fertil Soil 13:229–234

    CAS  Google Scholar 

  • Frey B, Vilarino A, Schüepp H, Arines J (1994) Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 26:711–717

    Article  CAS  Google Scholar 

  • Fujiyoshi M, Nakatsubo T, Ogura S, Horikoshi T (2000) Estimation of mycelial biomass of arbuscular mycorrhizal fungi associated with the annual legume Kummerowia striata by ergosterol analysis. Ecol Res 15:121–131

    Article  CAS  Google Scholar 

  • Gange AC, Bower E, Stagg PG, Aplin DM, Gillam AE, Bracken M (1999) A comparison of visualization techniques for recording arbuscular mycorrhizal colonization. New Phytol 142:123–132

    Article  Google Scholar 

  • Gaspar ML, Cabello MN (1994) Glomus antarcticum: the lipids and fatty acid composition. Mycotaxon 51:129–136

    Google Scholar 

  • Gaspar ML, Pollero RJ, Cabello MN (1994) Triacylglycerol consumption during spore germination of vesicular-arbuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452

    CAS  Google Scholar 

  • Gaspar L, Pollero R, Cabello M (1997a) Variations in the lipid composition of alfalfa roots during colonization with the arbuscular mycorrhizal fungus Glomus versiforme. Mycologia 89:37–82

    CAS  Google Scholar 

  • Gaspar ML, Pollero R, Cabello M (1997b)Partial purification and characterization of a lipolytic enzyme from spores of the arbuscular mycorrhizal fungus Glomus versiforme. Mycologia 89:610–614

    CAS  Google Scholar 

  • Golotte A, Brechenmacher L, Weidmann S, Franken P, Gianinazzi-Pearson V (2003) Plant genes involved in arbuscular mycorrhiza formation and functioning. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkäuser, Basel, pp 87–102

    Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64

    CAS  PubMed  Google Scholar 

  • Grandmougin-Ferjani A, Dalpé D, Hartmann MA, Laruelle F, Couturier D, Sancholle M (1997) Taxonomic aspects of the sterol and △11 hexadecenoic acid (C16:1, △11) distribution in arbuscular mycorrhizal spores. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer, Dordrecht, pp 195–197

    Google Scholar 

  • Grandmougin-Ferjani A, Dalpé Y, Hartmann MA, Laruelle F, Sancholle M (1999) Sterol distribution in arbuscular mycorrhizal fungi. Phytochemistry 50:1027–1031

    CAS  Google Scholar 

  • Harrier LA (2001) The arbuscular mycorrhizal symbiosis: amolecular review on the fungal dimension. J Exp Bot 52:469–478

    PubMed  CAS  Google Scholar 

  • Harrier L, Sawczak J (2000) Detection of the 3-phosphoglycerate kinase protein of Glomus mosseae. Mycorrhiza 10:81–86

    Article  CAS  Google Scholar 

  • Harrier LA, Wright F, Hooker JE (1998) Isolation of the 3-phosphoglycerate kinase gene of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe. Curr Genet 34:386–392

    PubMed  CAS  Google Scholar 

  • Harrison MJ (1996) A sugar transporter from Medicago truncatula altered expression pattern in roots during vesicular arbuscular (VA) mycorrhizal associations. Plant J 9:491–503

    Article  PubMed  CAS  Google Scholar 

  • Hart MM, Reader RJ (2002a) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002b) Is percent root colonization a good measure of colonization for all arbuscular mycorrhizal fungi? Mycorrhiza 12:297–301

    PubMed  Google Scholar 

  • Hijri M, Redecker D, MacDonald-Comber Petetot JA, Voigt K, Wöstemeyer J, Sanders IR (2002) Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Appl Environ Microbiol 68:4567–4573

    Article  PubMed  CAS  Google Scholar 

  • Ho I, Trappe JM (1973) Translocation of 14C from Festucaplants to their endomycorrhizal fungi. Nature 244:30–31

    CAS  Google Scholar 

  • Jabaji-Hare S (1988) Lipid and fatty acid profiles of some vesicular-arbuscular mycorrhizal fungi contribution to taxonomy. Mycologia 80:622–629

    CAS  Google Scholar 

  • Jabaji-Hare S, Deschene A, Kendrick B (1984) Lipid content and composition of vesicles of a vesicular-arbuscular mycorrhizal fungus. Mycologia 76:1024–1030

    CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Google Scholar 

  • Jansa J, Gryndler M, Matucha M (1999) Comparison of the lipid profiles of arbuscular mycorrhizal (AM) fungi and soil saprophytic fungi. Symbiosis 26:247–264

    CAS  Google Scholar 

  • Jeffries P, Young TWK (1994) Ecological aspects of mycoparasitism. In: Jeffries P, Young TWK (eds) International parasitic relationships. CAB International, Wallingford, pp 147–180

    Google Scholar 

  • Larsen J, Olsson PA, Jakobsen I (1998) The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycol Res 102:1491–1496

    Article  CAS  Google Scholar 

  • Lösel DM, Cooper KM (1979) Incorporation of 14C-labelled substrates by uninfected and VA mycorrhizal roots of onion. New Phytol 83:415–426

    Google Scholar 

  • Madan R, Pankhurst C, Hawke B, Smith S ( 2002) Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128

    Article  CAS  Google Scholar 

  • Muchembled J, Lounès-Hadj Sahraoui A, Grandmougin-Ferjani A, Sancholle M (2000) Changes in sterol composition with ontogeny of Blumeria graminis conidia. Can J Bot 78:1–6

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050

    Google Scholar 

  • Nordby HE, Nemec S, Nagy S (1981) Fatty acids and sterols associated with Citrus root mycorrhizae. J Agric Food Chem 29:396–401

    Article  CAS  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    CAS  Google Scholar 

  • Olsson PA, Johansen A (2000) Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycol Res 104:429–434

    CAS  Google Scholar 

  • Olsson PA, Baath E, Jacobsen I, Söderström B (1995) The use of PL and neutral lipid fatty acids to estimate biomass of arbuscularmycorrhizal fungi in soil. Mycol Res 99:623–629

    CAS  Google Scholar 

  • Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM (2003) Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol 159:1–10

    Article  Google Scholar 

  • Parks LW, Weete JD (1991) Fungal sterols. In: Patterson GW, Nes DW (eds) Physiology and biochemistry of sterols. Am Oil Chem Soc, Champaign, Illinois, pp 158–171

    Google Scholar 

  • Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  PubMed  CAS  Google Scholar 

  • Ravnskov S, Wu Y, Graham JH (2003) Arbuscular mycorrhizal fungi differentially effect expression of genes coding for sucrose synthases in maize roots. New Phytol 157:539–545

    Article  CAS  Google Scholar 

  • Rousseau A, Benhamou N, Chet I, Piché Y (1996) Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86:434–443

    Google Scholar 

  • Sancholle M, Dalpe Y (1993) Taxonomic relevance of fatty acids of arbuscular mycorrhizal fungi and related species. Mycotaxon 49:187–193

    Google Scholar 

  • Sancholle M, Dalpé Y, Grandmougin-Ferjani A (2001) Lipids of mycorrhizae. In: Hock B (ed) The Mycota IX. Springer, Berlin Heidelberg New York, pp 63–93

    Google Scholar 

  • Schmitz O, Danneberg G, Hundeshagen B, Klingner A, Bothe H (1991) Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J Plant Physiol 139:106–114

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Solaiman MDL, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538

    Article  CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Sward RJ (1981) The structure of the spores of Gigaspora margarita. I. The dormant spore. New Phytol 87:761–768

    Google Scholar 

  • Sylvia DM, Wilson DO, Graham JH, Maddo JJ, Millner P, Morton JB, Skipper HD, Wright SF, Jarstfer AG (1993) Evaluation of vesicular-arbuscular mycorrhizal fungi in diverse plants and soils. Soil Biol Biochem 25:705–713

    Article  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Gagné S, Willemeot C, Rioux JA (2003) Fatty acid synthesis on the Glomerales: key role of the intraradical phase. In: Proc 4th Int Conf Mycorrhizae (ICOM 4), Montréal

    Google Scholar 

  • van Buuren ML, Trieu AT, Baylock LA, Harrison MJ (2000) Isolation of genes induced during arbuscular mycorrhizal associations using a combination of subtractive hybridization and differential screening. In: Podila GK, Douds DD Jr (eds) Current advances in mycorrhizae research. APS Press, St Paul, Minnesota, pp 91–99

    Google Scholar 

  • Weete JD (1989) Structure and function of sterols in fungi. Adv Lip Res 23:115–167

    CAS  Google Scholar 

  • Weete JD, Gandhi SR (1997) Sterols of the phylum Zygomycota: phylogenic implications. Lipids 32:1309–1316

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grandmougin-Ferjani, A., Fontaine, J., Durand, R. (2005). Carbon Metabolism, Lipid Composition and Metabolism in Arbuscular Mycorrhizal Fungi. In: Declerck, S., Fortin, J.A., Strullu, DG. (eds) In Vitro Culture of Mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27331-X_9

Download citation

Publish with us

Policies and ethics