Skip to main content

Life Cycle of Glomus Species in Monoxenic Culture

  • Chapter
In Vitro Culture of Mycorrhizas

Part of the book series: Soil Biology ((SOILBIOL,volume 4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bago B, Vierheilig H, Piché Y, Azcón-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273–280

    Google Scholar 

  • Bago B, Azcón-Aguilar C, Piché Y (1998a) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Google Scholar 

  • Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998b) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388

    Google Scholar 

  • Bago B, Zipfel W, Williams RM, Piché Y (1999a) Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy. Protoplasma 209:77–89

    PubMed  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Douds DD, Brouillette J, Bécard G, Shachar-Hill Y (1999b) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–271

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2001) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Google Scholar 

  • Balestrini R, Morera C, Puigdomenech P, Bonfante P (1994) Location of a cell wall hydroxyproline-rich glycoprotein, cellulose and β-1,3-glucans in apical and differentiated regions of maize mycorrhizal roots. Planta 195:201–209

    Article  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular arbuscular mycorrhiza formation on Ri-T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Bécard G, Piché Y (1989a) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83

    Google Scholar 

  • Bécard G, Piché Y (1989b) Fungal growth stimulation by CO2 and root exudates in vesicular arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  Google Scholar 

  • Bécard G, Piché Y (1992) Establishment of vesicular arbuscular mycorrhiza in root organ culture: review and proposed methodology. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Techniques for the study of mycorrhiza. Academic Press, New York, pp 89–108

    Google Scholar 

  • Beilby JP (1983) Effects of inhibitors of early protein, RNA, and lipid synthesis in germinating vesicular arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 29:596–601

    PubMed  CAS  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular arbuscular mycorrhizal fungus, Glomus caledonium: changes in neutral and polar lipids. J Lip Res 21:739–750

    CAS  Google Scholar 

  • Beilby JP, Kidby DK (1982) The early synthesis of RNA, protein, and some associated metabolic events in germinating vesicular arbuscular mycorrhizal fungal spores of Glomus caledonius. Can J Microbiol 28:623–628

    CAS  Google Scholar 

  • Bianciotto V, Bonfante P (1993) Evidence of DNA replication in an arbuscular mycorrhizal fungus in the absence of the host plant. Protoplasma 176:100–105

    Article  CAS  Google Scholar 

  • Blancaflor EB, Zhao LM, Harrison MJ (2001) Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217:154–165

    Article  PubMed  CAS  Google Scholar 

  • Bonfante-Fasolo P (1987) Vesicular-arbuscular mycorrhizae: fungus-plant interactions at the cellular level. Symbiosis 3:249–268

    Google Scholar 

  • Bonfante-Fasolo P, Grippiolo R (1982) Ultrastructural and cytochemical changes in the wall of a vesicular arbuscular mycorrhizal fungus during symbiosis. Can J Bot 60:2303–2312

    Google Scholar 

  • Budi SW, Blal B, Gianinazzi S (1999) Surface-sterilization of Glomus mosseae sporocarps for studying endomycorrhization in vitro. Mycorrhiza 9:65–68

    Article  Google Scholar 

  • Camprubi A, Calvet C, Estaun V (1990) Efecto del almacenamiento en frio de un inoculo de Glomus mosseae sobre su infectividad y la germinacion “in vitro” de las esporas de resistencia. Invert Agric Prod Veg 5:337–343

    Google Scholar 

  • Carr GR, Hinkley MA, LeTacon F, Hepper CM, Jones MGK, Thomas E (1985) Improved hyphal growth of two species of vesicular arbuscular mycorrhizal fungi in the presence of suspension cultured plant cells. New Phytol 101:417–426

    Google Scholar 

  • Cavagnaro TR, Smith FA, Lorimer MF, Haskard KA, Ayling SM, Smith SE (2001) Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytol 149:105–113

    Article  Google Scholar 

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321

    Google Scholar 

  • Cooke JC, Gemma JN, Koske RE (1987) Observations of nuclei in vesicular arbuscular mycorrhizal fungi. Mycologia 79:331–333

    Google Scholar 

  • Dalpé Y (2004) The in vitro monoxenic culture of arbuscular mycorrhizal fungi: a major tool for taxonomical studies. In: Fri’as Hernández JT, Ferrera Cerrato R, Olalde V Portugal (eds) Advances en conocimiento de la biología de las Micorrizas. Universidad de Guanajuato, Mexico

    Google Scholar 

  • Daniels BA, Trappe JM (1980) Factors affecting spore germination of the VAM fungus Glomus epigaeus. Mycologia 72:457–471

    CAS  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri-T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Google Scholar 

  • Declerck S, Cranenbrouck S, Dalpé Y, Séguin S, Grandmougin-Ferjani A, Fontaine J, Sancholle M (2000) Glomus proliferum sp. nov.: a description based on morphological, biochemical, molecular and monoxenic cultivation data. Mycologia 92:1178–1187

    Google Scholar 

  • Declerck A, D’or D, Cranenbrouck S, Le Boulengé E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230

    Google Scholar 

  • de Souza FA, Berbara RLL (1999) Ontogeny of Glomus clarum in Ri T-DNA transformed roots. Mycologia 91:343–350

    Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared-root inocula of vesicular-arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17–22

    Article  Google Scholar 

  • Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226:131–151

    Article  CAS  Google Scholar 

  • El Ghachtouli N, Paynot M, Martin-Tanguy J, Morandi D, Gianinazzi S (1996) Effect of polyamines and polyamine biosynthesis inhibitors on spore germination and hyphal growth of Glomus mosseae. Mycol Res 100:597–600

    CAS  Google Scholar 

  • Elsen A, Declerck S, DeWaele D (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311

    Article  PubMed  CAS  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Google Scholar 

  • Garcia-Garrida JM, Rejon-Palomares A, Ocampo JA, Garcia-Romera I (1999) Effect of xyloglucan and xyloglucanase activity on the development of the arbuscular mycorrhizal Glomus mosseae. Mycol Res 103:882–886

    Google Scholar 

  • Garriock ML, Peterson RL, Ackerley CA (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus Glomus versiforme. New Phytol 112:85–92

    Google Scholar 

  • Gaspar L, Pollero RJ, Cabello MN (1994) Triacylglycerol consumption during spore germination of vesicular arbuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452

    CAS  Google Scholar 

  • Gilmore AR (1968) Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39:87–105

    Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:23–130

    Article  Google Scholar 

  • Giovannetti M, Avio L, Salutini L (1991) Morphological, cytochemical, and ontogenetic characteristics of a new species of vesicular-arbuscular mycorrhizal fungus. Can J Bot 69:161–167

    CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infecting stages. New Phytol 125:587–593

    Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  PubMed  CAS  Google Scholar 

  • Glorian V (2002) Recherche de polypeptides induits par des champignons endomycorhiziens dans des racines transformées de chicorée (Chicorium intybus L.) et de carotte (Daucus carota L.). PhD Thesis, Laboratoire de Mycologie/Phytopathologie/Environnement, Université du Littoral Calais, France

    Google Scholar 

  • Green NE, Graham SO, Schenck NC (1976) The influence of pH on the germination of vesicular arbuscular mycorrhizal spores. Mycologia 68:929–934

    Google Scholar 

  • Gunasekaran P, Sundaresan P, Ubalthoose Raja N, Lakshmanan M (1987) Effect of pH, temperature and nutrients on the germination of a vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum in vitro. Proc Indian AS-Plant Sci 97:231–234

    Google Scholar 

  • Hardie K (1984) Effect of pot-culture age on spore germination in Glomus mosseae. In: Proc 6th North American Conf Mycorrhizae, Oregon University, USA

    Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Molec Biol 50:361–89

    CAS  Google Scholar 

  • Hepper CM (1979) Germination and growth of Glomus caledonium spores: the effects of inhibitors and nutrients. Soil Biol Biochem 14:269–277

    Google Scholar 

  • Hepper CM (1981) Techniques for studying the infection of plants by vesicular-arbuscular mycorrhizal fungi under axenic conditions. New Phytol 88:641–647

    Google Scholar 

  • Hepper CM (1983) Limited independent growth of a vesicular arbuscular mycorrhizal fungus in vitro. New Phytol 93:537–542

    Google Scholar 

  • Hepper CM, Jakobsen I (1983) Hyphal growth from spores of the mycorrhizal fungus Glomus caledonius: effect of amino acids. Soil Biol Biochem 15:55–58

    Article  CAS  Google Scholar 

  • Hepper CM, Mosse B (1980) Vesicular arbuscular mycorrhiza in root organ cultures. In: Ingram DS, Helgeson JP (eds) Tissue culture methods for plant pathologists. Blackwell, New York, pp 167–171

    Google Scholar 

  • Hepper CM, Smith GA (1976) Observations on the germination of Endogone spores. Trans Br Mycol Soc 66:189–193

    Google Scholar 

  • Hijri M, Sanders IR (2004) The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes. Fungal Genet Biol 41:253–261

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Article  PubMed  CAS  Google Scholar 

  • Juge C, Samson J, Bastien C, Vierheilig H, Coughlan A, Piché Y (2002) Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a critical cold-storage period. Mycorrhiza 12:37–42

    Article  PubMed  Google Scholar 

  • Karandashov VE, Kuzovkina IN, George E, Marschner H (1999) Monoxenic culture of arbuscular mycorrhizal fungi and plant hairy roots. Russian J Plant Physiol 46:87–92

    CAS  Google Scholar 

  • Karandashov V, Kuzovkina I, Hawkins HJ, George E (2000) Growth and sporulation of the arbuscular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots. Mycorrhiza 10:23–28

    Article  CAS  Google Scholar 

  • LeTacon F, Skinner FA, Mosse B (1983) Spore germination and hyphal growth of a vesicular arbuscular mycorrhizal fungus, Glomus mosseae (Gerdemann and Trappe) under decreased oxygen and increased carbon dioxide concentrations. Can J Microbiol 29:1280–1285

    CAS  Google Scholar 

  • Leu SW, Chang DCN (1993) Physiological study of Glomus and Gigaspora spore germinating on millipore surface. Trans Mycol Soc Rep China 8:1–19

    Google Scholar 

  • Lim LL, Fineran BA, Cole ALJ (1983) Ultrastructure of intrahyphal hyphae of Glomus fasciculatum (Thaxter) Gerdemann and Trappe in roots of white clover (Trifolium repens L.). New Phytol 95:231–239

    Google Scholar 

  • Logi C, Sbrana C, Giovannetti M (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl Environ Microbiol 64:3473–3479

    PubMed  CAS  Google Scholar 

  • Marbach K, Stahl U (1994) Senescence of mycelia. In: Wessels JGH, Meinhardt F (eds) Growth, differentiation and sexuality. The Mycota. Springer, Berlin Heidelberg New York, pp 195–210

    Google Scholar 

  • Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431

    Google Scholar 

  • Meier R, Charvat I (1992) Gemination of Glomus mosseae spores: procedure and ultrastructural analysis. Int J Plant Sci 153:541–549

    Article  Google Scholar 

  • Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286

    Google Scholar 

  • Mosse B (1962) The establishment of vesicular arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    PubMed  CAS  Google Scholar 

  • Mosse B (1988) Some studies relating to “independent” growth of vesicular-arbuscular endophytes. Can J Bot 66:2533–2540

    Article  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 7:1045–1050

    Google Scholar 

  • Nagahashi G, Douds D Jr, Buée M (2000) Light-induced hyphal branching of germinated AM fungal spores. Plant Soil 219:71–79

    Article  CAS  Google Scholar 

  • Nantais L (1997) Étude comparative du pouvoir inoculant des spores vs les vésicules du champignon endomycorhizien Glomus intraradices. Thèse MSc, Université de Montréal, Canada

    Google Scholar 

  • Nuutila AM Vestberg M, Kauppinen V (1995) Infection of hairy roots of strawberry (Fragaria × Ananassa Duch.) with arbuscular mycorrhizal fungus. Plant Cell Rep 14:505–509

    Article  CAS  Google Scholar 

  • Paula MA, dePinto JEB, Siqueira JO, Pasqual M (1994) Benefits of plant cell suspension to vesicular-arbuscular mycorrhizal fungi in vitro. 3. Effects of different culture medium. Pesqui Agropecu Bras 25:1117–1124

    Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Douds DD, Charvat I (1999) In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549–1556

    Article  Google Scholar 

  • Pons F, Gianinazzi-Pearson V (1984) Effect of phosphorus, potassium, nitrogen and pH on the in vitro behaviour of vesicular-arbuscular endomycorrhizal fungi. Influence du phosphore, du potassium, de l’azote et du pH sur le comportement in vitro de champignons endomycorhizogenes à vésicules et arbuscules. Cryptogamie Mycol 5:87–100

    Google Scholar 

  • Poulin MJ, Simard J, Catford JG, Labrie F, Piché Y (1997) Response of symbiotic endomycorrhizal fungi to estrogens and antiestrogens. Mol Plant Microb Interact 10:481–487

    Article  CAS  Google Scholar 

  • Powell CL (1976) Development of mycorrhizal infections from Endogone spores and infected root segments Trans Br Mycol Soc 66:439–445

    Article  Google Scholar 

  • Sancholle M, Dalpé Y, Grandmougin-Ferjani A (2001) Lipids of Mycorrhizae. In: Hock (ed) The Mycota. IX. Fungal associations. Springer, Berlin Heidelberg New York, pp 63–93

    Google Scholar 

  • Sanders IR (2002) Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. Am Nat 160:S128–S141

    Article  PubMed  Google Scholar 

  • Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873

    Article  PubMed  CAS  Google Scholar 

  • Schreiner RP, Koide RT (1993) Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and non mycotrophic plant root systems. Appl Environ Microbiol 59:2750–2752

    PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1403–1421

    Google Scholar 

  • Sheikh NA, Sanders FE (1988) Effect of temperature on germination mycorrhizal spores and VAM infection in roots. Biologia 34:337–350

    Google Scholar 

  • Simoneau P, Louisy-Louis N, Plenchette C, Strullu DG (1994) Accumulation of new polypeptides in Ri T-DNA transformed roots of tomato (Lycopersicon esculentum) during the development of vesicular arbuscular mycorrhizae. Appl Environ Microbiol 60:1810–1813

    PubMed  CAS  Google Scholar 

  • Siqueira JO, Hubbell DH (1984) Effect of nutrition on germination and growth of vesicular arbuscular mycorrhizal (VAM) fungi. In: Proc 6th North American Conf Mycorrhizae (NACOM), Oregon, USA, pp 368

    Google Scholar 

  • Siqueira JO, Hubbell DH, Schenck NC (1982) Spore germination and germ tube growth of a vesicular arbuscular mycorrhizal fungus in vitro. Mycologia 74:952–959

    Google Scholar 

  • Siqueira JO, Sylvia DM, Gibson J, Hubbell DH (1985) Spores, germination, and germ tubes of vesicular arbuscular mycorrhizal fungi. Can J Microbiol 31:965–971

    Article  CAS  Google Scholar 

  • Smith FA, Smith F (1997) Structural diversity in (vesicular) arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • St-Arnaud M, Hamel, C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorhizes à vésicules et arbuscules en conditions axéniques. C R Acad Sci Paris 303:245–250

    Google Scholar 

  • Strullu DG, Romand C (1987) Culture axénique de vésicules isolées partir d’endomycorhizes et ré-association in vitro des racines de tomate. C R Acad Sci Paris 305:15–19

    Google Scholar 

  • Strullu DG, Romand C, Plenchette C (1991) Axenic culture and encapsulation of the intraradical forms of Glomus spp. World J Microb Biot 7:292–297

    Google Scholar 

  • Strullu DG, Diop T, Plenchette C (1997) Réalisation de collection sin vitro de Glomus intraradices (Schenck et Smith) et Glomus versiforme (Karsten et Berch) et proposition d’un cycle de développement. C R Acad Sci Paris 320:41–47

    Google Scholar 

  • Tamasloukht M, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from. Plant Physiol 131:1468–1478

    Article  PubMed  CAS  Google Scholar 

  • Tilak KVBR, Dwivedi BR, Il A, Yindian C (1990) Enhancement of spore germination of Glomus fasciculatum by bacterial cell free extracts. J Exp Biol 28:373–375

    Google Scholar 

  • Timonen S, Smith FA, Smith SE (2001) Microtubules of mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots. Can J Bot 79:307–313

    Article  Google Scholar 

  • Tommerup IC (1983) Spore dormancy in vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 81:37–45

    Google Scholar 

  • Tommerup I (1984) Population biology of VA mycorrhizal fungi: propagule behaviour. In: Proc 6th North American Conf Mycorrhizae (NACOM), Oregon, USA, p 331

    Google Scholar 

  • Tommerup I, Kidby DK (1980) Production of aseptic spores of vesicular arbuscular endophytes and their viability after chemical and physical stress. Appl Environ Microbiol 39:1111–1119

    PubMed  CAS  Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    PubMed  CAS  Google Scholar 

  • Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular arbuscular mycorrhizal fungi. Effects of selected Streptomyces species. Phytopathology 81:754–759

    Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piché Y (1998) Flavonoids and arbuscular mycorrhizal fungi. In: Manthey J, Buslig B (eds) Flavonoids in the living system. Plenum, New York, pp 9–33

    Google Scholar 

  • Vilarino A, Sainz MJ (1997) Treatment of Glomus mosseae propagules with 50% sucrose increases spore germination and inoculum potential. Soil Biol Biochem 29:1571–1573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalpé, Y., de Souza, F.A., Declerck, S. (2005). Life Cycle of Glomus Species in Monoxenic Culture. In: Declerck, S., Fortin, J.A., Strullu, DG. (eds) In Vitro Culture of Mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27331-X_4

Download citation

Publish with us

Policies and ethics