Skip to main content

Cebranopadol: A Novel First-in-Class Potent Analgesic Acting via NOP and Opioid Receptors

  • Chapter
  • First Online:
The Nociceptin/Orphanin FQ Peptide Receptor

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 254))

Abstract

Cebranopadol is a novel first-in-class analgesic with highly potent agonistic activity at nociceptin/orphanin FQ peptide (NOP) and opioid receptors. It is highly potent and efficacious across a broad range of preclinical pain models. Its side effect profile is better compared to typical opioids. Mechanistic studies have shown that cebranopadol’s activity at NOP receptors contributes to its anti-hyperalgesic effects while ameliorating some of its opioid-type side effects, including respiratory depression and abuse potential. Phase II of clinical development has been completed, demonstrating efficacy and good tolerability in acute and chronic pain conditions.

This article focusses on reviewing data on the preclinical in vitro and in vivo pharmacology, safety, and tolerability, as well as clinical trials with cebranopadol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asth L, Ruzza C, Malfacini D et al (2016) Beta-arrestin 2 rather than G protein efficacy determines the anxiolytic-versus antidepressant-like effects of nociceptin/orphanin FQ receptor ligands. Neuropharmacology 105:434–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benredjem B, Dallaire P, Pineyro G (2017) Analyzing biased responses of GPCR ligands. Curr Opin Pharmacol 32:71–76

    Article  PubMed  CAS  Google Scholar 

  • Bird MF, Lambert DG (2015) Simultaneous targeting of multiple opioid receptor types. Curr Opin Support Palliat Care 9:98–102

    Article  PubMed  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Gainetdinov RR et al (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498

    Article  PubMed  CAS  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  PubMed  CAS  Google Scholar 

  • Bologna Z, Teoh JP, Bayoumi AS et al (2017) Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol Ther 25:12–25

    Article  Google Scholar 

  • Calo’ G, Lambert DG (2018) Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br J Anaesth 121:1105–1114

    Article  CAS  Google Scholar 

  • Camarda V, Fischetti C, Anzellotti N et al (2009) Pharmacological profile of NOP receptors coupled with calcium signaling via the chimeric protein G alpha qi5. Naunyn Schmiedeberg’s Arch Pharmacol 379:599–607

    Article  CAS  Google Scholar 

  • Chang SD, Brieaddy LE, Harvey JD et al (2015a) Novel synthesis and pharmacological characterization of NOP receptor agonist 8-[(1S,3aS)-2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (Ro 64-6198). ACS Chem Neurosci 6:1956–1964

    Article  PubMed  CAS  Google Scholar 

  • Chang SD, Mascarella SW, Spangler SM et al (2015b) Quantitative signaling and structure-activity analyses demonstrate functional selectivity at the nociceptin/orphanin FQ Ooioid receptor. Mol Pharmacol 88:502–511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Charlton SJ, Vauquelin G (2010) Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Br J Pharmacol 161:1250–1265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christoph T, Kögel B, Strassburger W et al (2007) Tramadol has a better potency ratio relative to morphine in neuropathic than in nociceptive pain models. Drugs R D 8:51–57

    Article  PubMed  CAS  Google Scholar 

  • Christoph A, Eerdekens MH, Kok M et al (2017) Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain 158:1813–1824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christoph T, Raffa R, De Vry J et al (2018) Synergistic interaction between the agonism of cebranopadol at nociceptin/orphanin FQ and classical opioid receptors in the rat spinal nerve ligation model. Pharmacol Res Perspect. https://doi.org/10.1002/prp2.444

    Article  CAS  Google Scholar 

  • Chung S, Pohl S, Zeng J et al (2006) Endogenous orphanin FQ/nociceptin is involved in the development of morphine tolerance. J Pharmacol Exp Ther 318:262–267

    Article  CAS  PubMed  Google Scholar 

  • Ciccocioppo R, Angeletti S, Sanna PP et al (2000) Effect of nociceptin/orphanin FQ on the rewarding properties of morphine. Eur J Pharmacol 404:153–159

    Article  PubMed  CAS  Google Scholar 

  • Comer SD, Ashworth JB, Sullivan MA et al (2009) Relationship between rate of infusion and reinforcing strength of oxycodone in humans. J Opioid Manag 5:203–212

    Article  PubMed  Google Scholar 

  • Courteix C, Coudoré-Civiale MA, Privat AM et al (2004) Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain 110:236–245

    Article  PubMed  CAS  Google Scholar 

  • Cremeans CM, Gruley E, Kyle DJ et al (2012) Roles of μ-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. J Pharmacol Exp Ther 343:72–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Guglielmo G, Matzeu A, Kononoff J et al (2017) Cebranopadol blocks the escalation of cocaine intake and conditioned reinstatement of cocaine seeking in rats. J Pharmacol Exp Ther 362:378–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahan A, Yassen A, Bijl H et al (2005) Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br J Anaesth 94:825–834

    Article  PubMed  CAS  Google Scholar 

  • Dahan A, Boom M, Sarton E et al (2017) Respiratory effects of the nociceptin/orphanin FQ peptide and opioid receptor agonist, cebranopadol, in healthy human volunteers. Anesthesiology 126:697–707

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Czoty PW, Kiguchi N et al (2016) A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proc Natl Acad Sci 113:E5511–E5518

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ding H, Kiguchi N, Yasuda D et al (2018) A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 10:eaar3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eerdekens M, Koch ED, Kok M et al (2016) Cebranopadol, a novel first-in-class analgesic: efficacy, safety, tolerability in patients with pain due to diabetic peripheral neuropathy. Postgrad Med 128(Suppl 2):25

    Google Scholar 

  • Eerdekens MH, Kapanadze S, Koch ED et al (2018) Cancer related chronic pain: investigation of the novel analgesic drug candidate cebranopadol in a randomized, double blind, noninferiority trial. Eur J Pain. https://doi.org/10.1002/ejp.1331

    Article  PubMed  CAS  Google Scholar 

  • Fantinati A, Bianco S, Guerrini R et al (2017) A diastereoselective synthesis of cebranopadol, a novel analgesic showing NOP/mu mixed agonism. Sci Rep 7:2416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Göhler K, Sokolowska M, Schoedel K et al (2018) Assessment of the abuse potential of cebranopadol in non-dependent recreational opioid users: a phase 1 randomized controlled study. J Clin Psychopharmacol. https://doi.org/10.1097/JCP.0000000000000995

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Grottick AJ, Ballard TM et al (2001) Influence of the selective ORL1 receptor agonist, Ro64-6198, on rodent neurological function. Neuropharmacology 41:97–107

    Article  PubMed  CAS  Google Scholar 

  • Hu E, Calò G, Guerrini R et al (2010) Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain 148:107–113

    Article  CAS  PubMed  Google Scholar 

  • Journigan VB, Polgar WE, Khroyan TV et al (2014) Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP-receptor selective scaffolds. Part II. Bioorg Med Chem 22:2508–2516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khroyan TV, Polgar WE, Cami-Kobeci G et al (2011) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther 336:952–961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khroyan TV, Cippitelli A, Toll N et al (2017) In vitro and in vivo profile of PPL-101 and PPL-103: mixed opioid partial agonist analgesics with low abuse potential. Front Psych 8:52

    Google Scholar 

  • Kleideiter E, Piana C, Wang S et al (2018) Clinical pharmacokinetic characteristics of cebranopadol, a novel first-in-class analgesic. Clin Pharmacokinet 57:31–50. Erratum in: Clin Pharmacokinet 57:1057–1058

    Article  PubMed  CAS  Google Scholar 

  • Ko MC, Naughton NN (2009) Antinociceptive effects of nociceptin/orphanin FQ administered intrathecally in monkeys. J Pain 10:509–516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kotlińska J, Suder P, Legowska A et al (2000) OrphaninFQ/nociceptin inhibits morphine withdrawal. Life Sci 66:PL119–PL123

    Article  PubMed  Google Scholar 

  • Kotlinska J, Wichmann J, Rafalski P et al (2003) Non-peptidergic OP4 receptor agonist inhibits morphine antinociception but does not influence morphine dependence. Neuroreport 14:601–604

    Article  PubMed  CAS  Google Scholar 

  • Lambert DG, Bird MF, Rowbotham DJ (2015) Cebranopadol: a first in-class example of a nociceptin/orphanin FQ receptor and opioid receptor agonist. Br J Anaesth 114:364–366

    Article  CAS  PubMed  Google Scholar 

  • Linz K, Christoph T, Tzschentke TM et al (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther 349:535–548

    Article  CAS  PubMed  Google Scholar 

  • Linz K, Schröder W, Frosch S et al (2017) Opioid-type respiratory depressant side effects of cebranopadol in rats are limited by its nociceptin/orphanin FQ peptide receptor agonist activity. Anesthesiology 126:708–715

    Article  PubMed  CAS  Google Scholar 

  • Lutfy K, Hossain SM, Khaliq I et al (2001) Orphanin FQ/nociceptin attenuates the development of morphine tolerance in rats. Br J Pharmacol 134:529–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malfacini D, Ambrosio C, Gro’ MC et al (2015) Pharmacological profile of nociceptin/orphanin FQ receptors interacting with G-proteins and β-arrestins 2. PLoS One 10:e0132865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meert TF, Vermeirsch HA (2005) A preclinical comparison between different opioids: antinociceptive versus adverse effects. Pharmacol Biochem Behav 80:309–326

    Article  PubMed  CAS  Google Scholar 

  • Micheli L, Lucarini E, Corti F et al (2018) Involvement of the N/OFQ-NOP system in rat morphine antinociceptive tolerance: are astrocytes the crossroad? Eur J Pharmacol 823:79–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy NP, Lee Y, Maidment NT (1999) Orphanin FQ/nociceptin blocks acquisition of morphine place preference. Brain Res 832:168–170

    Article  CAS  PubMed  Google Scholar 

  • Piana C, Wang S, Bursi R (2016) A novel model-based methodology for the evaluation of abuse potential. https://www.page-meeting.org/pdf_assets/2662-Poster_PAGE_2016_final.pdf. Accessed 30 Aug 2018

  • Podlesnik CA, Ko MC, Winger G et al (2011) The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology 213:53–60

    Article  CAS  PubMed  Google Scholar 

  • Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 314:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Raffa RB, Burdge G, Gambrah J et al (2017) Cebranopadol: novel dual opioid/NOP receptor agonist analgesic. J Clin Pharm Ther 42:8–17

    Article  PubMed  CAS  Google Scholar 

  • Reiss D, Wichmann J, Tekeshima H et al (2008) Effects of nociceptin/orphanin FQ receptor (NOP) agonist, Ro64-6198, on reactivity to acute pain in mice: comparison to morphine. Eur J Pharmacol 579:141–148

    Article  PubMed  CAS  Google Scholar 

  • Rizzi A, Malfacini D, Cerlesi MC et al (2014) In vitro and in vivo pharmacological characterization of nociceptin/orphanin FQ tetrabranched derivatives. Br J Pharmacol 171:4138–4153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rizzi A, Cerlesi MC, Ruzza C et al (2016) Pharmacological characterization of cebranopadol a novel analgesic acting as mixed nociceptin/orphanin FQ and opioid receptor agonist. Pharmacol Res Perspect 4:e00247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rizzi A, Ruzza C, Bianco S et al (2017) Antinociceptive action of NOP and opioid receptor agonists in the mouse orofacial formalin test. Peptides 94:71–77

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, De Vry J, Bruckmann W et al (2010) Effects of the NOP receptor agonist Ro65-6570 on the acquisition of opiate- and psychostimulant-induced conditioned place preference in rats. Eur J Pharmacol 645:119–126

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, De Vry J, Bruckmann W et al (2011) Pharmacological blockade or genetic knockout of the NOP receptor potentiates the rewarding effect of morphine in rats. Drug Alcohol Depend 114:253–256

    PubMed  CAS  Google Scholar 

  • Rutten K, Schröder W, Christoph T et al (2018) Selectivity profiling of NOP, MOP, DOP and KOP receptor antagonists in the rat spinal nerve ligation model of mononeuropathic pain. Eur J Pharmacol 827:41–48

    Article  PubMed  CAS  Google Scholar 

  • Ruzza C, Rizzi A, Malfacini D et al (2014) Pharmacological characterization of tachykinin tetrabranched derivatives. Br J Pharmacol 171:4125–4137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ruzza C, Holanda VA, Gavioli EC et al (2018) NOP agonist action of cebranopadol counteracts its liability to promote physical dependence. Peptides 112:101–105

    Article  PubMed  CAS  Google Scholar 

  • Sałat K, Jakubowska A, Kulig K (2015) Cebranopadol: a first-in-class potent analgesic agent with agonistic activity at nociceptin/orphanin FQ and opioid receptors. Expert Opin Investig Drugs 24:837–844

    Article  PubMed  CAS  Google Scholar 

  • Salat K, Furgala A, Salat R (2018) Evaluation of cebranopadol, a dually acting nociceptin/orphanin FQ and opioid receptor agonist in mouse models of acute, tonic, and chemotherapy-induced neuropathic pain. Inflammopharmacology 26:361–374

    Article  PubMed  CAS  Google Scholar 

  • Schiene K, De Vry J, Tzschentke TM (2011) Antinociceptive and antihyperalgesic effects of tapentadol in animal models of inflammatory pain. J Pharmacol Exp Ther 339:537–544

    Article  PubMed  CAS  Google Scholar 

  • Schiene K, Schröder W, Linz K et al (2018a) Inhibition of experimental visceral pain in rodents by cebranopadol. Behav Pharmacol. https://doi.org/10.1097/FBP.0000000000000420

    Article  PubMed  CAS  Google Scholar 

  • Schiene K, Schröder W, Linz K et al (2018b) Nociceptin/orphanin FQ opioid peptide (NOP) receptor and micro-opioid peptide (MOP) receptors both contribute to the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Eur J Pharmacol 832:90–95

    Article  PubMed  CAS  Google Scholar 

  • Scholz A, Bothmer J, Kok M et al (2018) Cebranopadol: a novel, first-in-class, strong analgesic: results from a randomized phase IIa clinical trial in postoperative acute pain. Pain Physician 21:E193–E206

    Article  PubMed  Google Scholar 

  • Schröder W, Lambert DG, Ko MC et al (2014) Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol 171:3777–3800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schunk S, Linz K, Hinze C et al (2014) Discovery of a potent analgesic NOP and opioid receptor agonist: cebranopadol. ACS Med Chem Lett 5:857–862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen Q, Deng Y, Ciccocioppo R et al (2017) Cebranopadol, a mixed opioid agonist, reduces cocaine self-administration through nociceptin opioid and mu opioid receptors. Front Psych 8:234

    Article  Google Scholar 

  • Spagnolo B, Calo G, Polgar WE et al (2008) Activities of mixed NOP and mu-opioid receptor ligands. Br J Pharmacol 153:609–619

    Article  PubMed  CAS  Google Scholar 

  • Sukhtankar DD, Lagorio CH, Ko MC (2014) Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats. Eur J Pharmacol 745:182–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian JH, Xu W, Fang Y et al (1997) Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia: antagonism in brain and potentiation in spinal cord of the rat. Br J Pharmacol 120:676–680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Toll L (2013) The use of bifunctional NOP/mu and NOP receptor selective compounds for the treatment of pain, drug abuse, and psychiatric disorders. Curr Pharm Des 19:7451–7460

    CAS  PubMed  Google Scholar 

  • Toll L, Khroyan TV, Polgar WE et al (2009) Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociception receptor/mu-opioid receptor ligands: implications for therapeutic applications. J Pharmacol Exp Ther 331:954–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toll L, Bruchas MR, Calo’ G et al (2016) Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev 68:419–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzschentke TM, Rutten K (2018) Mu-opioid peptide (MOP) and nociceptin/orphanin FQ peptide (NOP) receptor activation both contribute to the discriminative stimulus properties of cebranopadol in the rat. Neuropharmacology 129:100–108

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM, De Vry J, Terlinden R et al (2006) Tapentadol HCl: analgesic, μ opioid receptor (MOR) agonist, noradrenaline reuptake inhibitor. Drugs Future 31:1053–1061

    Article  CAS  Google Scholar 

  • Tzschentke TM, Christoph T, Kögel B et al (2007) (−)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther 323:265–276

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM, Jahnel U, Kögel B et al (2009) Tapentadol hydrochloride: a next-generation, centrally acting analgesic with two mechanisms of action in a single molecule. Drugs Today 45:483–496

    CAS  Google Scholar 

  • Tzschentke TM, Kögel BY, Frosch S et al (2017a) Limited potential of cebranopadol to produce opioid-type physical dependence in rodents. Addict Biol. https://doi.org/10.1111/adb.12550

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM, Linz K, Frosch S et al (2017b) Antihyperalgesic, antiallodynic, and antinociceptive effects of cebranopadol, a novel potent nociceptin/orphanin FQ and opioid receptor agonist, after peripheral and central administration in rodent models of neuropathic pain. Pain Pract 17:1032–1041

    Article  PubMed  Google Scholar 

  • Ueda H, Yamaguchi T, Tokuyama S et al (1997) Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci Lett 237:136–138

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Inoue M, Takeshima H et al (2000) Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J Neurosci 20:7640–7647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walentiny DM, Wiebelhaus JM, Beardsley PM (2018) Nociceptin/orphanin FQ receptors modulate the discriminative stimulus effects of oxycodone in C57BL/6 mice. Drug Alcohol Depend 187:335–342

    Article  PubMed  CAS  Google Scholar 

  • Winger G, Hursh SR, Casey KL et al (2002) Relative reinforcing strength of three N-methyl-D-aspartate antagonists with different onsets of action. J Pharmacol Exp Ther 301:690–697

    Article  PubMed  CAS  Google Scholar 

  • Winter L, Nadeson R, Tucker AP et al (2003) Antinociceptive properties of neurosteroids: a comparison of alphadolone and alphaxalone in potentiation of opioid antinociception. Anesth Analg 97:798–805

    Article  PubMed  CAS  Google Scholar 

  • Yassen A, Olofsen E, Romberg R et al (2007) Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther 81:50–58

    Article  PubMed  CAS  Google Scholar 

  • Zaveri NT (2011) The nociceptin/orphanin FQ receptor (NOP) as a target for drug abuse medications. Curr Top Med Chem 11:1151–1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaveri NT, Jiang F, Olsen C et al (2013) Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP receptor-selective scaffolds. Part I. Bioorg Med Chem Lett 23:3308–3313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaveri NT, Journigan VB, Polgar WE (2015) Discovery of the first small-molecule opioid pan antagonist with nanomolar affinity at mu, delta, kappa, and nociception opioid receptors. ACS Chem Neurosci 6:646–657

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are given to Stefanie Frosch and Marielle Eerdekens for careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Tzschentke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzschentke, T.M., Linz, K., Koch, T., Christoph, T. (2019). Cebranopadol: A Novel First-in-Class Potent Analgesic Acting via NOP and Opioid Receptors. In: Ko, MC., Caló, G. (eds) The Nociceptin/Orphanin FQ Peptide Receptor. Handbook of Experimental Pharmacology, vol 254. Springer, Cham. https://doi.org/10.1007/164_2019_206

Download citation

Publish with us

Policies and ethics