Skip to main content

Omics Approaches in Sleep-Wake Regulation

  • Chapter
  • First Online:
Sleep-Wake Neurobiology and Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 253))

Abstract

Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. ‘omics’ approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as ‘systems genetics’, will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.

Emma K. O’Callaghan and Edward W. Green contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aho V, Ollila HM, Kronholm E, Bondia-Pons I, Soininen P et al (2016) Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses. Sci Rep 6:24828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM et al (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12(7):540–550

    Article  CAS  PubMed  Google Scholar 

  • Anafi RC, Pellegrino R, Shockley KR, Romer M, Tufik S, Pack AI (2013) Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues. BMC Genomics 14:362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ang JE, Revell V, Mann A, Mäntele S, Otway DT et al (2012) Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int 29(7):868–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbon EL, Knurowska M, Dijk DJ (2015) Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people. J Psychopharmacol 29(7):764–776

    Article  CAS  PubMed  Google Scholar 

  • Archer SN, Oster H (2015) How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 24(5):476–493

    Article  PubMed  Google Scholar 

  • Archer SN, Laing EE, Möller-Levet CS, van der Veen DR, Bucca G et al (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111(6):E682–E691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC et al (2014) Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation. Sleep 37(10):1589–1600

    Article  PubMed  PubMed Central  Google Scholar 

  • Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A et al (2014) Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci 17(3):377–382

    Article  CAS  PubMed  Google Scholar 

  • Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS et al (2009) Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling. J Biol Chem 284(12):7606–7622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basheer R, Brown R, Ramesh V, Begum S, McCarley RW (2005) Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. J Neurosci Res 82(5):650–658

    Article  CAS  PubMed  Google Scholar 

  • Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C (2013) Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 33(36):14288–14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellesi M, de Vivo L, Tononi G, Cirelli C (2015) Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bettica P, Squassante L, Groeger JA, Gennery B, Winsky-Sommerer R, Dijk DJ (2012) Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology 37(5):1224–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–21.29.9

    Article  Google Scholar 

  • Chiang CK, Mehta N, Patel A, Zhang P, Ning Z et al (2014) The proteomic landscape of the suprachiasmatic nucleus clock reveals large-scale coordination of key biological processes. PLoS Genet 10(10):e1004695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirelli C, Tononi G (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res 885(2):303–321

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, LaVaute TM, Tononi G (2005) Sleep and wakefulness modulate gene expression in Drosophila. J Neurochem 94(5):1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Faraguna U, Tononi G (2006) Changes in brain gene expression after long-term sleep deprivation. J Neurochem 98(5):1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Pfister-Genskow M, McCarthy D, Woodbury R, Tononi G (2009) Proteomic profiling of the rat cerebral cortex in sleep and waking. Arch Ital Biol 147(3):59–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daan S, Beersma DG, Borbély AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Phys 246(2 Pt 2):R161–R183

    CAS  Google Scholar 

  • Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA (2012) The human circadian metabolome. Proc Natl Acad Sci U S A 109(7):2625–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darlington TM, Ehringer MA, Larson C, Phang TL, Radcliffe RA (2013) Transcriptome analysis of inbred long sleep and inbred short sleep mice. Genes Brain Behav 12(2):263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SK, Ang JE, Revell VL, Holmes B, Mann A et al (2014) Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A 111(29):10761–10766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CJ, Bohnet SG, Meyerson JM, Krueger JM (2007) Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett 422(1):68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CJ, Clinton JM, Krueger JM (2012) MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol 113(11):1756–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CJ, Taishi P, Honn KA, Koberstein JN, Krueger JM (2016) P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. Am J Physiol Regul Integr Comp Physiol 311(6):R1004–R1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Deery MJ, Maywood ES, Chesham JE, Sládek M, Karp NA et al (2009) Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Curr Biol 19(23):2031–2036

    Article  CAS  PubMed  Google Scholar 

  • Duffield GE (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15(10):991–1002

    Article  CAS  PubMed  Google Scholar 

  • Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC et al (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67(2):469–474

    Article  CAS  PubMed  Google Scholar 

  • Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 109(14):5541–5546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421(6919):177–182

    Article  CAS  PubMed  Google Scholar 

  • Faraco J, Lin L, Kornum BR, Kenny EE, Trynka G et al (2013) ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet 9(2):e1003270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franken P, Chollet D, Tafti M (2001) The homeostatic regulation of sleep need is under genetic control. J Neurosci 21(8):2610–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freyburger M, Pierre A, Paquette G, Bélanger-Nelson E, Bedont J et al (2016) EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. Sleep 39(3):613–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Fustin JM, Karakawa S, Okamura H (2017) Circadian profiling of amino acids in the SCN and cerebral cortex by laser capture microdissection-mass spectrometry. J Biol Rhythms 32(6):609–620

    Article  CAS  PubMed  Google Scholar 

  • Giskeødegård GF, Davies SK, Revell VL, Keun H, Skene DJ (2015) Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep 5:14843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14(8):16010–16039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottlieb DJ, Hek K, Chen TH, Watson NF, Eiriksdottir G et al (2015) Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study. Mol Psychiatry 20(10):1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, Pradervand S, Ahnaou A, Drinkenburg W, Tafti M, Franken P (2009) How to keep the brain awake? The complex molecular pharmacogenetics of wake promotion. Neuropsychopharmacology 34(7):1625–1640

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, van der Veen DR, Winsky-Sommerer R, Hogben A, Laing EE et al (2014) A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism. FASEB J 28(6):2441–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havekes R, Abel T (2017) The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function. Curr Opin Neurobiol 44:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobson JA (2005) Sleep is of the brain, by the brain and for the brain. Nature 437(7063):1254–1256

    Article  CAS  PubMed  Google Scholar 

  • Holst SC, Valomon A, Landolt HP (2016) Sleep pharmacogenetics: personalized sleep-wake therapy. Annu Rev Pharmacol Toxicol 56:577–603

    Article  CAS  PubMed  Google Scholar 

  • Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ et al (2010) Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet 42(9):786–789

    Article  CAS  PubMed  Google Scholar 

  • Hughes ME, Hong HK, Chong JL, Indacochea AA, Lee SS et al (2012) Brain-specific rescue of clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 8(7):e1002835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB et al (2017) Guidelines for genome-scale analysis of biological rhythms. J Biol Rhythms 32(5):380–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Qin Y, Shu H, Li X (2010) Methylation analyses on promoters of mPer1, mPer2, and mCry1 during perinatal development. Biochem Biophys Res Commun 391(4):1742–1747

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Pfister-Genskow M, Benca RM, Cirelli C (2008) Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 105(1):46–62

    Article  CAS  PubMed  Google Scholar 

  • Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17(12):1414–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann T, Elvsåshagen T, Alnæs D, Zak N, Pedersen PØ et al (2016) The brain functional connectome is robustly altered by lack of sleep. NeuroImage 127:324–332

    Article  PubMed  Google Scholar 

  • Keegan KP, Pradhan S, Wang JP, Allada R (2007) Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes. PLoS Comput Biol 3(11):e208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalyfa A, Mutskov V, Carreras A, Khalyfa AA, Hakim F, Gozal D (2014) Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice. Diabetes 63(10):3230–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Capdevila OS et al (2012) DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med 185(3):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kim JH, Cho YE, Baek MC, Jung JY et al (2014) Chronic sleep deprivation-induced proteome changes in astrocytes of the rat hypothalamus. J Proteome Res 13(9):4047–4061

    Article  CAS  PubMed  Google Scholar 

  • Koh KP, Rao A (2013) DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol 25(2):152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike N, Yoo SH, Huang HC, Kumar V, Lee C et al (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbe I, Husse J, Salinas G, Lingner T, Astiz M, Oster H (2016) The SCN clock governs circadian transcription rhythms in murine epididymal white adipose tissue. J Biol Rhythms 31(6):577–587

    Article  CAS  PubMed  Google Scholar 

  • Laing EE, Johnston JD, Möller-Levet CS, Bucca G, Smith CP et al (2015) Exploiting human and mouse transcriptomic data: identification of circadian genes and pathways influencing health. BioEssays 37(5):544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F et al (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10(11):e1001442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J et al (2014) 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet 10(11):e1004792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Yanagawa T, Leopold DA, Fujii N, Duyn JH (2015) Robust long-range coordination of spontaneous neural activity in waking, sleep and anesthesia. Cereb Cortex 25(9):2929–2938

    Article  PubMed  Google Scholar 

  • Lück S, Thurley K, Thaben PF, Westermark PO (2014) Rhythmic degradation explains and unifies circadian transcriptome and proteome data. Cell Rep 9(2):741–751

    Article  PubMed  CAS  Google Scholar 

  • Mackiewicz M, Shockley KR, Romer MA, Galante RJ, Zimmerman JE et al (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31(3):441–457

    Article  CAS  PubMed  Google Scholar 

  • Mackiewicz M, Zimmerman JE, Shockley KR, Churchill GA, Pack AI (2009) What are microarrays teaching us about sleep? Trends Mol Med 15(2):79–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Maekawa F, Shimba S, Takumi S, Sano T, Suzuki T et al (2012) Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics 7(9):1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning JH, Courchesne E, Fox PT (2013) Intrinsic connectivity network mapping in young children during natural sleep. NeuroImage 83:288–293

    Article  PubMed  Google Scholar 

  • Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104(50):20090–20095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marguerat S, Bähler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67(4):569–579

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Lozano Sinues P, Tarokh L, Li X, Kohler M, Brown SA et al (2014) Circadian variation of the human metabolome captured by real-time breath analysis. PLoS One 9(12):e114422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I et al (2013) Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci U S A 110(9):3339–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massart R, Freyburger M, Suderman M, Paquet J, El Helou J et al (2014) The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry 4:e347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massart R, Suderman M, Mongrain V, Szyf M (2017) DNA methylation and transcription onset in the brain. Epigenomics 9(6):797–809

    Article  CAS  PubMed  Google Scholar 

  • Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F et al (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 111(1):167–172

    Article  CAS  PubMed  Google Scholar 

  • McGowan PO, Szyf M (2010) The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiol Dis 39(1):66–72

    Article  PubMed  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53(6):857–869

    Article  CAS  PubMed  Google Scholar 

  • Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104(9):3342–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller M, Sparre T, Bache N, Roepstorff P, Vorum H (2007) Proteomic analysis of day-night variations in protein levels in the rat pineal gland. Proteomics 7(12):2009–2018

    Article  PubMed  CAS  Google Scholar 

  • Möller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110(12):E1132–E1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Mongrain V, Hernandez SA, Pradervand S, Dorsaz S, Curie T et al (2010) Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33(9):1147–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Monti JM, Torterolo P, Pandi Perumal SR (2017) The effects of second generation antipsychotic drugs on sleep variables in healthy subjects and patients with schizophrenia. Sleep Med Rev 33:51–57

    Article  PubMed  Google Scholar 

  • Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G (2013) The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Münzel M, Globisch D, Bruckl T, Wagner M, Welzmiller V et al (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49(31):5375–5377

    Article  PubMed  CAS  Google Scholar 

  • Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L et al (2016) Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat Genet 48(8):912–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson EK, Boström AE, Mwinyi J, Schiöth HB (2016) Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. OMICS 20(6):334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okoniewski MJ, Miller CJ (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 7:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ollila HM, Kettunen J, Pietiläinen O, Aho V, Silander K et al (2014) Genome-wide association study of sleep duration in the Finnish population. J Sleep Res 23(6):609–618

    Article  PubMed  Google Scholar 

  • Pawlyk AC, Ferber M, Shah A, Pack AI, Naidoo N (2007) Proteomic analysis of the effects and interactions of sleep deprivation and aging in mouse cerebral cortex. J Neurochem 103(6):2301–2313

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR et al (2012) Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44(21):1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Pirooznia SK, Chiu K, Chan MT, Zimmerman JE, Elefant F (2012) Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics 192(4):1327–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter NM, Bohannon JH, Curran-Rauhut M, Buechel HM, Dowling AL et al (2012) Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress. PLoS One 7(7):e40128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi IA, Mehler MF (2014) An evolving view of epigenetic complexity in the brain. Philos Trans R Soc Lond B Biol Sci 369(1652):20130506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C et al (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M et al (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16(11):1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Sabir M, Gaudreault PO, Freyburger M, Massart R, Blanchet-Cohen A et al (2015) Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice. Brain Behav Immun 47:118–130

    Article  CAS  PubMed  Google Scholar 

  • Sahar S, Sassone-Corsi P (2013) The epigenetic language of circadian clocks. Handb Exp Pharmacol 217:29–44

    Article  CAS  Google Scholar 

  • Schwartz MD, Nguyen AT, Warrier DR, Palmerston JB, Thomas AM, et al (2016) Locus coeruleus and tuberomammillary nuclei ablations attenuate hypocretin/orexin antagonist-mediated REM sleep. eNeuro 3(2):ENEURO.0018-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A et al (2012) Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22(8):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi F, Chen X, Fu A, Hansen J, Stevens R et al (2013) Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen 54(6):406–413

    Article  CAS  PubMed  Google Scholar 

  • Soshnev AA, Ishimoto H, McAllister BF, Li X, Wehling MD et al (2011) A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics 189(2):455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B et al (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130(4):730–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed F, Grunenwald H, Caruccio N (2009) Next-generation sequencing library preparation: simultaneous fragmentation and tagging using in vitro transposition. Nat Methods 6:i–ii

    CAS  Google Scholar 

  • Tafti M, Chollet D, Valatx JL, Franken P (1999) Quantitative trait loci approach to the genetics of sleep in recombinant inbred mice. J Sleep Res 8(Suppl 1):37–43

    Article  PubMed  Google Scholar 

  • Takahashi JS, Kumar V, Nakashe P, Koike N, Huang HC et al (2015) ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. Methods Enzymol 551:285–321

    Article  CAS  PubMed  Google Scholar 

  • Terao A, Steininger TL, Hyder K, Apte-Deshpande A, Ding J et al (2003) Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116(1):187–200

    Article  CAS  PubMed  Google Scholar 

  • Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159(3):514–529

    Article  CAS  PubMed  Google Scholar 

  • Thimgan MS, Seugnet L, Turk J, Shaw PJ (2015) Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila. Sleep 38(5):801–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth LA, Williams RW (1999) A quantitative genetic analysis of slow-wave sleep and rapid-eye movement sleep in CXB recombinant inbred mice. Behav Genet 29(5):329–337

    Article  CAS  PubMed  Google Scholar 

  • Tudor JC, Davis EJ, Peixoto L, Wimmer ME, van Tilborg E et al (2016) Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Sci Signal 9(425):ra41

    Article  PubMed  PubMed Central  Google Scholar 

  • Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GT, O’Neill JS et al (2013) Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A 110(4):1554–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecsey CG, Peixoto L, Choi JH, Wimmer M, Jaganath D et al (2012) Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Genomics 44(20):981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventskovska O, Porkka-Heiskanen T, Karpova NN (2015) Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats. J Sleep Res 24(2):124–130

    Article  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liu Y, Briesemann M, Yan J (2010) Computational analysis of gene regulation in animal sleep deprivation. Physiol Genomics 42(3):427–436

    Article  CAS  PubMed  Google Scholar 

  • Weljie AM, Meerlo P, Goel N, Sengupta A, Kayser MS et al (2015) Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proc Natl Acad Sci U S A 112(8):2569–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J et al (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21(10):2205–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winrow CJ, Williams DL, Kasarskis A, Millstein J, Laposky AD et al (2009) Uncovering the genetic landscape for multiple sleep-wake traits. PLoS One 4(4):e5161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wither RG, Colic S, Wu C, Bardakjian BL, Zhang L, Eubanks JH (2012) Daily rhythmic behaviors and thermoregulatory patterns are disrupted in adult female MeCP2-deficient mice. PLoS One 7(4):e35396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61:379–422

    Article  CAS  PubMed  Google Scholar 

  • Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25(7):679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia L, Ma S, Zhang Y, Wang T, Zhou M et al (2015) Daily variation in global and local DNA methylation in mouse livers. PLoS One 10(2):e0118101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L et al (2015) Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. elife 4:e08638

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu M, Hon GC, Szulwach KE, Song CX, Jin P et al (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7(12):2159–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang RR, Cui QY, Murai K, Lim YC, Smith ZD et al (2013) Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13(2):237–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Z, Fan L, Frick KM (2010) Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc Natl Acad Sci U S A 107(12):5605–5610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB et al (2011) Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int 28(10):852–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman JE, Rizzo W, Shockley KR, Raizen DM, Naidoo N et al (2006) Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol Genomics 27(3):337–350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank M. Freyburger, R. Massart, L. Boureau, and A. Blanchet-Cohen for their help in producing the data included in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Mongrain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Callaghan, E.K., Green, E.W., Franken, P., Mongrain, V. (2018). Omics Approaches in Sleep-Wake Regulation. In: Landolt, HP., Dijk, DJ. (eds) Sleep-Wake Neurobiology and Pharmacology . Handbook of Experimental Pharmacology, vol 253. Springer, Cham. https://doi.org/10.1007/164_2018_125

Download citation

Publish with us

Policies and ethics