Skip to main content

Organ-Specific Cancer Metabolism and Its Potential for Therapy

  • Chapter
Metabolic Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 233))

Abstract

Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, the aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor-positive breast cancer, early- and late-stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g., Warburg versus reverse Warburg metabolism). Yet, for each of the cancers, their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.

*Equal contributing authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2014) IDH1 inhibitor shows promising early results. Cancer Discov 5: 4

    Google Scholar 

  • Adamis S, Varkarakis IM (2014) Defining prostate cancer risk after radical prostatectomy. Eur J Surg Oncol 40(5):496–504

    Article  CAS  PubMed  Google Scholar 

  • Adeva M et al (2013) Enzymes involved in l-lactate metabolism in humans. Mitochondrion 13(6):615–629

    Article  CAS  PubMed  Google Scholar 

  • Albers MJ et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleksandrova K et al (2014) Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology 60:858–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez JV et al (2014) Oncogene pathway activation in mammary tumors dictates [18F]-FDG-PET uptake. Cancer Res 74:7583–7598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann T et al (2009) GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol 174(4):1544–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antalis CJ et al (2010) High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat 122(3):661–670

    Article  CAS  PubMed  Google Scholar 

  • Audard V et al (2007) Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations. J Pathol 212(3):345–352

    Article  CAS  PubMed  Google Scholar 

  • Badrick E, Renehan AG (2014) Diabetes and cancer: 5 years into the recent controversy. Eur J Cancer 50(12):2119–2125

    Article  PubMed  Google Scholar 

  • Baldo BA, Pagani M (2014) Adverse events to nontargeted and targeted chemotherapeutic agents: emphasis on hypersensitivity responses. Immunol Allergy Clin North Am 34(3):565–596, viii

    Article  PubMed  Google Scholar 

  • Banerji S et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer DE et al (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24(41):6314–6322

    Article  CAS  PubMed  Google Scholar 

  • Ben Sahra I, Tanti J-F, Bost F (2010) The combination of metformin and 2-deoxyglucose inhibits autophagy and induces AMPK-dependent apoptosis in prostate cancer cells. Autophagy 6:670–671

    Article  PubMed  Google Scholar 

  • Berger MF et al (2011) The genomic complexity of primary human prostate cancer. Nature 470(7333):214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkers CR et al (2013) Metabolic regulation by p53 family members. Cell Metab 18(5):617–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertino JR (2009) Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol 22(4):577–582

    Article  PubMed  Google Scholar 

  • Bianchini F, Kaaks R, Vainio H (2002) Overweight, obesity, and cancer risk. Lancet Oncol 3(9):565–574

    Article  PubMed  Google Scholar 

  • Birsoy K et al (2013) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet 45(1):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruix J, Sherman M, American Association for the Study of Liver Diseases (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Budczies J et al (2014) Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer 136:1619–1628

    Article  PubMed  CAS  Google Scholar 

  • Budhu A et al (2013) Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 144(5):1066–1075, e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Calvisi DF et al (2011) Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140(3):1071–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canape C et al (2014) Probing treatment response of glutaminolytic prostate cancer cells to natural drugs with hyperpolarized [5- C]glutamine. Magn Reson Med

    Google Scholar 

  • Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  • Cao H et al (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134(6):933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13(4):227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carver BS (2014) Strategies for targeting the androgen receptor axis in prostate cancer. Drug Discov Today 19:1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira NM, Fernandes PA, Ramos MJ (2007) Understanding ribonucleotide reductase inactivation by gemcitabine. Chemistry 13(30):8507–8515

    Article  CAS  PubMed  Google Scholar 

  • Chandler JD et al (2003) Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 97:2035–2042

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2011) Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 30(42):4297–4306

    Article  CAS  PubMed  Google Scholar 

  • Chen P et al (2014) Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis. Br J Cancer 110(9):2327–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesney J et al (2014) Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget 5(16):6670–6686

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi J et al (2013) Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res 15(5):R78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clem B et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7(1):110–120

    Article  CAS  PubMed  Google Scholar 

  • Costello LC et al (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costello LC, Franklin RB, Feng P (2005) Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV (2012a) Links between metabolism and cancer. Genes Dev 26(9):877–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV (2012b) MYC on the path to cancer. Cell 149(1):22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang L et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16(9):387–397

    Article  CAS  PubMed  Google Scholar 

  • De Bock K et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663

    Article  PubMed  CAS  Google Scholar 

  • De Schrijver E et al (2003) RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res 63:3799–3804

    PubMed  Google Scholar 

  • DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148(6):1132–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennison JB et al (2013) Lactate dehydrogenase B: a metabolic marker of response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res 19(13):3703–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Tommaso L et al (2009) The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma. J Hepatol 50(4):746–754

    Article  PubMed  CAS  Google Scholar 

  • DiPaola RS et al (2008) Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate 68:1743–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov L, Hong CS, Yang C, Zhuang Z, Heiss JD (2015) New developments in the pathogenesis and therapeutic targeting of the IDH1 mutation in glioma. Int J Med Sci 12(3):201–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Dohnal V, Wu Q, Kuca K (2014) Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol 88(9):1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Doyen J et al (2014) Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochem Biophys Res Commun 451(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Draoui N, Feron O (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech 4:727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar EM et al (2014) Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs 32(3):452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Gammal AT et al (2010) Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res 16(1):56–64

    Article  PubMed  CAS  Google Scholar 

  • El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365(12):1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Eroles P et al (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38(6):698–707

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ et al (2005) Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 23(10):1303–1307

    Article  CAS  PubMed  Google Scholar 

  • Falvella FS et al (2002) Stearoyl-CoA desaturase 1 (Scd1) gene overexpression is associated with genetic predisposition to hepatocarcinogenesis in mice and rats. Carcinogenesis 23(11):1933–1936

    Article  CAS  PubMed  Google Scholar 

  • Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6(9):674–687

    Article  CAS  PubMed  Google Scholar 

  • Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    Article  CAS  PubMed  Google Scholar 

  • Fendt SM et al (2013a) Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nat Commun 4:2236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fendt S-M et al (2013b) Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res 73:4429–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiaschi T et al (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72:5130–5140

    Article  CAS  PubMed  Google Scholar 

  • Flavin R et al (2010) Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 6(4):551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948

    Article  CAS  PubMed  Google Scholar 

  • Franklin RB, Costello LC (2007) Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 463:211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franz MC et al (2013) Zinc transporters in prostate cancer. Mol Aspects Med 34(2–3):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friday E et al (2012) Role of glutamate dehydrogenase in cancer growth and homeostasis. In: Dehydrogenases. InTech, Rijeka, Croatia, pp 181–190

    Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9(6):447–464

    Article  CAS  PubMed  Google Scholar 

  • Fung C, Dale W, Mohile SG (2014) Prostate cancer in the elderly patient. J Clin Oncol 32:2523–2530

    Article  PubMed  Google Scholar 

  • Galluzzi L et al (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12(11):829–846

    Article  CAS  PubMed  Google Scholar 

  • Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 3(7):415–424

    Article  CAS  PubMed  Google Scholar 

  • Gao SP et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117(12):3846–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli F, Apetoh L (2014) Enhancing the anticancer effects of 5-fluorouracil: current challenges and future perspectives. Biomed J

    Google Scholar 

  • Giatromanolaki A et al (2012) The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biol Ther 13:1284–1289

    Article  PubMed  PubMed Central  Google Scholar 

  • Giatromanolaki A et al (2014) Autophagy proteins in prostate cancer: relation with anaerobic metabolism and Gleason score. Urol Oncol 32:39.e11–8

    Article  CAS  Google Scholar 

  • Giovannucci E et al (2010) Diabetes and cancer: a consensus report. CA Cancer J Clin 60(4):207–221

    Article  PubMed  Google Scholar 

  • Glen A et al (2008) iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res 7:897–907

    Article  CAS  PubMed  Google Scholar 

  • Goidts V et al (2012) RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene 31(27):3235–3243

    Article  CAS  PubMed  Google Scholar 

  • Goldhirsch A et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z et al (2014) Associations of dietary folate, vitamins B6 and B12 and methionine intake with risk of breast cancer among African American and European American women. Int J Cancer 134(6):1422–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goricar K et al (2014) Influence of the folate pathway and transporter polymorphisms on methotrexate treatment outcome in osteosarcoma. Pharmacogenet Genomics 24:514–521

    CAS  PubMed  Google Scholar 

  • Grasso CS et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406):239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groheux D et al (2011) Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 38(3):426–435

    Article  PubMed  Google Scholar 

  • Gross MI et al (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13(4):890–901

    Article  CAS  PubMed  Google Scholar 

  • Gurel B et al (2010) NKX3.1 as a marker of prostatic origin in metastatic tumors. Am J Surg Pathol 34(8):1097–1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamanaka RB, Chandel NS (2012) Targeting glucose metabolism for cancer therapy. J Exp Med 209(2):211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Harris HR, Bergkvist L, Wolk A (2012) Folate intake and breast cancer mortality in a cohort of Swedish women. Breast Cancer Res Treat 132(1):243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzivassiliou G et al (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311–321

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich A et al (2014a) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 65(1):124–137

    Article  PubMed  Google Scholar 

  • Heidenreich A et al (2014b) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 65(2):467–479

    Article  CAS  PubMed  Google Scholar 

  • Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123(9):3678–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi D et al (2012) MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 209(4):679–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlader N et al (2014) US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst 106(5):1–8

    Google Scholar 

  • Hu W et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107(16):7455–7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q et al (2014) CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J Hepatol 61(4):859–866

    Article  CAS  PubMed  Google Scholar 

  • Hunt MC, Tillander V, Alexson SE (2014) Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 98:45–55

    Article  CAS  PubMed  Google Scholar 

  • Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52:81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Jadvar H et al (2005) Glucose metabolism of human prostate cancer mouse xenografts. Mol Imaging 4:91–97

    PubMed  Google Scholar 

  • Jadvar H et al (2013) Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J Nucl Med 54:1195–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jans J et al (2010) Expression and localization of hypoxia proteins in prostate cancer: prognostic implications after radical prostatectomy. Urology 75:786–792

    Article  PubMed  Google Scholar 

  • Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  • Jeon HM et al (2013) Expression of cell metabolism-related genes in different molecular subtypes of triple-negative breast cancer. Tumori 99(4):555–564

    PubMed  Google Scholar 

  • Jin Q et al (2010) Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res 12(6):R96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapanda CN et al (2012) Synthesis and pharmacological evaluation of 2,4-dinitroaryldithiocarbamate derivatives as novel monoacylglycerol lipase inhibitors. J Med Chem 55(12):5774–5783

    Article  CAS  PubMed  Google Scholar 

  • Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32(49):5501–5511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keibler MA, Fendt SM, Stephanopoulos G (2012) Expanding the concepts and tools of metabolic engineering to elucidate cancer metabolism. Biotechnol Prog 28(6):1409–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennecke H et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28(20):3271–3277

    Article  PubMed  Google Scholar 

  • Keshari KR et al (2013) Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate 73:1171–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA et al (2000) Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 32(5):792–797

    Article  CAS  PubMed  Google Scholar 

  • Kim YR et al (2013) HOXB13 downregulates intracellular zinc and increases NF-kappaB signaling to promote prostate cancer metastasis. Oncogene 33:4558–4567

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K et al (2011) Proliferative activity in hepatocellular carcinoma is closely correlated with glucose metabolism but not angiogenesis. J Hepatol 55(4):846–857

    Article  CAS  PubMed  Google Scholar 

  • Klarer AC et al (2014) Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer Metab 2(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Koo HR et al (2014) 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes. Eur Radiol 24(3):610–618

    Article  PubMed  Google Scholar 

  • Koomoa DL et al (2008) Ornithine decarboxylase inhibition by alpha-difluoromethylornithine activates opposing signaling pathways via phosphorylation of both Akt/protein kinase B and p27Kip1 in neuroblastoma. Cancer Res 68(23):9825–9831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koukourakis MI et al (2014) Lactate dehydrogenase 5 isoenzyme overexpression defines resistance of prostate cancer to radiotherapy. Br J Cancer 110:2217–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kridel SJ et al (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075

    Article  CAS  PubMed  Google Scholar 

  • Kumar S et al (2010) Clinical trials and progress with paclitaxel in ovarian cancer. Int J Womens Health 2:411–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar-Sinha C et al (2004) Elevated alpha-methylacyl-CoA racemase enzymatic activity in prostate cancer. Am J Pathol 164(3):787–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung HN, Marks JR, Chi JT (2011) Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 7(8):e1002229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labuschagne CF et al (2014) Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7(4):1248–1258

    Article  CAS  PubMed  Google Scholar 

  • Larsson SC, Wolk A (2007) Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br J Cancer 97(7):1005–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GY et al (2014a) Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res 74(11):3114–3126

    Article  CAS  PubMed  Google Scholar 

  • Lee JM et al (2014b) beta-Catenin signaling in hepatocellular cancer: implications in inflammation, fibrosis, and proliferation. Cancer Lett 343(1):90–97

    Article  CAS  PubMed  Google Scholar 

  • Lee YH et al (2014c) Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Res 74(17):4752–4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiblich A et al (2006) Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene 25:2953–2960

    Article  CAS  PubMed  Google Scholar 

  • Levitsky LL et al (1994) GLUT-1 and GLUT-2 mRNA, protein, and glucose transporter activity in cultured fetal and adult hepatocytes. Am J Physiol 267(1 Pt 1):E88–E94

    CAS  PubMed  Google Scholar 

  • Li C et al (2011) Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem 286(39):34164–34174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KS et al (2014) Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner. Oncogene 33(35):4433–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9:230–234

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuckier LS, Ghesani NV (2010) Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res 30:369–374

    PubMed  Google Scholar 

  • Liu X, Fu YM, Meadows GG (2011) Differential effects of specific amino acid restriction on glucose metabolism, reduction/oxidation status and mitochondrial damage in DU145 and PC3 prostate cancer cells. Oncol Lett 2(2):349–355

    PubMed  PubMed Central  Google Scholar 

  • Liu W et al (2012a) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109(23):8983–8988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2012b) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11(8):1672–1682

    Article  CAS  PubMed  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locasale JW et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long J et al (2011) Expression level of glutamine synthetase is increased in hepatocellular carcinoma and liver tissue with cirrhosis and chronic hepatitis B. Hepatol Int 5(2):698–706

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu C et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund K, Merrill DK, Guynn RW (1985) The reactions of the phosphorylated pathway of L-serine biosynthesis: thermodynamic relationships in rabbit liver in vivo. Arch Biochem Biophys 237(1):186–196

    Article  CAS  PubMed  Google Scholar 

  • Lu-Yao GL et al (2009) Outcomes of localized prostate cancer following conservative management. JAMA 302:1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R et al (2013) Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat Commun 4:2508

    PubMed  Google Scholar 

  • Mano Y et al (2014) Correlation between biological marker expression and fluorine-18 fluorodeoxyglucose uptake in hepatocellular carcinoma. Am J Clin Pathol 142(3):391–397

    Article  PubMed  Google Scholar 

  • Martinez-Outschoorn UE et al (2010a) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 9(12):2423–2433

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Outschoorn UE et al (2010b) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9(17):3515–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massie CE et al (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30:2719–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBrayer SK et al (2012) Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy. Blood 119(20):4686–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleland ML et al (2012) An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res 72(22):5812–5823

    Article  CAS  PubMed  Google Scholar 

  • Mena E et al (2012) 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med 53:538–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metallo CM, Vander Heiden MG (2013) Understanding metabolic regulation and its influence on cell physiology. Mol Cell 49(3):388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migita T et al (2014) Inhibition of ATP citrate lyase induces triglyceride accumulation with altered fatty acid composition in cancer cells. Int J Cancer 135(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Mihelich BL et al (2011) miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. J Biol Chem 286(52):44503–44511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamimoto R et al (2011) The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med 25:21–27

    Article  CAS  PubMed  Google Scholar 

  • Moeini A, Cornella H, Villanueva A (2012) Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer 1(2):83–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J-S et al (2011) Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J 433:225–233

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ, Boos J (1998) Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol 28(2):97–113

    Article  CAS  PubMed  Google Scholar 

  • Neradil J, Pavlasova G, Veselska R (2012) New mechanisms for an old drug; DHFR- and non-DHFR-mediated effects of methotrexate in cancer cells. Klin Onkol 25(Suppl 2):2s87–2s92

    PubMed  Google Scholar 

  • Ni Y, Schwaneberg U, Sun ZH (2008) Arginine deiminase, a potential anti-tumor drug. Cancer Lett 261(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. N Engl J Med 367(19):1792–1802

    Article  CAS  PubMed  Google Scholar 

  • Niva CC, Lee JM, Myohara M (2008) Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis. Dev Genes Evol 218(1):39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura DK et al (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppong BA et al (2014) The effect of metformin on breast cancer outcomes in patients with type 2 diabetes. Cancer Med 3(4):1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama N et al (1999) The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29:623–629

    Article  CAS  PubMed  Google Scholar 

  • Pértega-Gomes N et al (2014) A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer 14:352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierobon M, Frankenfeld CL (2013) Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat 137(1):307–314

    Article  PubMed  Google Scholar 

  • Petrut B, Trinkaus M, Simmons C, Clemons M (2008) A primer of bone metastases management in breast cancer patients. Curr Oncol 15(Suppl 1):S50–S57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polanski R et al (2014) Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res 20(4):926–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollari S et al (2011) Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 125(2):421–430

    Article  CAS  PubMed  Google Scholar 

  • Popovici-Muller J et al (2012) Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med Chem Lett 3(10):850–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porporato PE et al (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Possemato R et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puszyk WM et al (2013) Linking metabolism and epigenetic regulation in development of hepatocellular carcinoma. Lab Invest 93(9):983–990

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinicke K et al (2012) Cellular distribution of glut-1 and glut-5 in benign and malignant human prostate tissue. J Cell Biochem 113:553–562

    Article  CAS  PubMed  Google Scholar 

  • Ren JG et al (2010) Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2. PLoS One 5(9):1–12

    Google Scholar 

  • Ren JG et al (2014) Knockdown of malic enzyme 2 suppresses lung tumor growth, induces differentiation and impacts PI3K/AKT signaling. Sci Rep 4:5414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizos CV, Elisaf MS (2013) Metformin and cancer. Eur J Pharmacol 705(1–3):96–108

    Article  CAS  PubMed  Google Scholar 

  • Rohle D et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340(6132):626–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ros S, Schulze A (2013) Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab 1:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ros S et al (2012) Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2:328–343

    Article  CAS  PubMed  Google Scholar 

  • Ross J et al (2008) Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine. Mol Cancer Ther 7(8):2556–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S et al (2003) Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res 1:707–715

    CAS  PubMed  Google Scholar 

  • Roychowdhury S, Chinnaiyan AM (2013) Advancing precision medicine for prostate cancer through genomics. J Clin Oncol Off J Am Soc Clin Oncol 31:1866–1873

    Article  CAS  Google Scholar 

  • Rubin MA et al (2002) alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287(13):1662–1670

    Article  CAS  PubMed  Google Scholar 

  • Rubin MA, Maher CA, Chinnaiyan AM (2011) Common gene rearrangements in prostate cancer. J Clin Oncol 29(27):3659–3668

    Article  CAS  PubMed  Google Scholar 

  • Sanità P et al (2014) Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer 14:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santidrian AF et al (2013) Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 123(3):1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlaepfer IR et al (2014) Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther 13:2361–2371, p. molcanther. 0183.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoors S et al (2014) Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab 19(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shonk CE, Morris HP, Boxer GE (1965) Patterns of glycolytic enzymes in rat liver and hepatoma. Cancer Res 25:671–676

    CAS  PubMed  Google Scholar 

  • Shrubsole MJ et al (2011) Dietary B vitamin and methionine intakes and breast cancer risk among Chinese women. Am J Epidemiol 173(10):1171–1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonveaux P et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotgia F et al (2011) Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 13(4):213

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein M et al (2010) Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70:1388–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein E et al (2014) Clinical safety and activity in a phase I trial of AG-221, a first in class, potent inhibitor of the IDH2-mutant protein, in patients with IDH2 mutant positive advanced hematologic malignancies. In: Proceedings of the 105th annual meeting of the American Association for Cancer Research

    Google Scholar 

  • Sung J et al (2003) Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int 92:24–27

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MJ et al (1963) Comparative biochemistry hepatomas. IV. Isotope studies of glucose and fructose metabolism in liver tumors of different growth rates. Cancer Res 23:995–1002

    CAS  PubMed  Google Scholar 

  • Swinnen JV et al (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98:19–22

    Article  CAS  PubMed  Google Scholar 

  • Taketa K et al (1988) Profiles of carbohydrate-metabolizing enzymes in human hepatocellular carcinomas and preneoplastic livers. Cancer Res 48(2):467–474

    CAS  PubMed  Google Scholar 

  • Taylor BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchou J et al (2010) Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 12(6):657–662

    Article  PubMed  Google Scholar 

  • Telang S et al (2014) Discovery of a PFKFB3 inhibitor for phase I trial testing that synergizes with the B-Raf inhibitor vemurafenib. Cancer Metab 2(Suppl 1):P14

    Article  PubMed Central  Google Scholar 

  • Tennakoon JB et al (2013) Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 33:5251–5261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277

    Article  CAS  PubMed  Google Scholar 

  • Tessem M-B et al (2008) Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 60:510–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(4):339–346

    Article  CAS  PubMed  Google Scholar 

  • Timmerman LA et al (2013) Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24(4):450–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson IP et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30(4):406–410

    Article  CAS  PubMed  Google Scholar 

  • Torizuka T et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36(10):1811–1817

    CAS  PubMed  Google Scholar 

  • Tsouko E et al (2014) Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis 3:e103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiyama K et al (2013) Expression of microRNAs associated with Gleason grading system in prostate cancer: miR-182-5p is a useful marker for high grade prostate cancer. Prostate 73(8):827–834

    Article  CAS  PubMed  Google Scholar 

  • Tsui KH et al (2011) p53 downregulates the gene expression of mitochondrial aconitase in human prostate carcinoma cells. Prostate 71(1):62–70

    Article  CAS  PubMed  Google Scholar 

  • Tsui KH et al (2013) Hypoxia upregulates the gene expression of mitochondrial aconitase in prostate carcinoma cells. J Mol Endocrinol 51(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Turcan S et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Sande T et al (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Res 62(3):642–646

    PubMed  Google Scholar 

  • Van de Sande T et al (2005) High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB. J Pathol 206(2):214–219

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden MG et al (2010) Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 79(8):1118–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaz CV et al (2012) Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int J Biochem Cell Biol 44:2077–2084

    Article  CAS  PubMed  Google Scholar 

  • Visser WF et al (2007) Metabolite transport across the peroxisomal membrane. Biochem J 401(2):365–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voduc KD et al (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28(10):1684–1691

    Article  PubMed  Google Scholar 

  • Walling J (2006) From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Invest New Drugs 24(1):37–77

    Article  PubMed  Google Scholar 

  • Walsh MJ et al (2010) ML265: a potent PKM2 activator induces tetramerization and reduces tumor formation and size in a mouse xenograft model. In: Probe reports from the NIH Molecular Libraries Program, Bethesda, MD

    Google Scholar 

  • Walsh AL et al (2014) Long noncoding RNAs and prostate carcinogenesis: the missing ‘linc’? Trends Mol Med 20(8):428–436

    Article  CAS  PubMed  Google Scholar 

  • Wang JB et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18(3):207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B et al (2012) Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology 56(1):186–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F et al (2013) Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340(6132):622–626

    Article  CAS  PubMed  Google Scholar 

  • Weber G, Ashmore J (1958) Absent fructose-1,6-diphosphatase activity in hepatoma. Exp Cell Res 14(1):226–228

    Article  CAS  PubMed  Google Scholar 

  • Weber G, Cantero A (1955) Glucose-6-phosphatase activity in normal, pre-cancerous, and neoplastic tissues. Cancer Res 15(2):105–108

    CAS  PubMed  Google Scholar 

  • Weber G, Morris HP (1963) Comparative biochemistry of hepatomas. III. Carbohydrate enzymes in liver tumors of different growth rates. Cancer Res 23:987–994

    CAS  PubMed  Google Scholar 

  • Weischenfeldt J et al (2013) Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 23(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Wu JM, Skill NJ, Maluccio MA (2010) Evidence of aberrant lipid metabolism in hepatitis C and hepatocellular carcinoma. HPB (Oxford) 12(9):625–636

    Article  Google Scholar 

  • Xu X, Chen J (2009) One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genomics 36(4):203–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalcin A et al (2010) Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling. Oncogene 29(1):139–149

    Article  CAS  PubMed  Google Scholar 

  • Yan H et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B et al (2003) Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol 163(3):1101–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2007) Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res 6(7):2605–2614

    Article  CAS  PubMed  Google Scholar 

  • Yang C et al (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69(20):7986–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh SDJ et al (1996) Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl Med Biol 23:693–697

    Article  CAS  PubMed  Google Scholar 

  • Yeruva L et al (2010) Perillyl alcohol and methyl jasmonate sensitize cancer cells to cisplatin. Anticancer Drugs 21(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101

    Article  CAS  PubMed  Google Scholar 

  • Yue S et al (2014) Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 19(3):393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadra G, Photopoulos C, Loda M (2013) The fat side of prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 1831:1518–1532

    Article  CAS  Google Scholar 

  • Zaugg K et al (2011) Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 25(10):1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecchini V et al (2014) Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer. EMBO J 33:1365–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zha S et al (2005) Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 63:316–323

    Article  CAS  PubMed  Google Scholar 

  • Zhang SM et al (2003) Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst 95(5):373–380

    Article  CAS  PubMed  Google Scholar 

  • Zhang CX et al (2011) Dietary folate, vitamin B6, vitamin B12 and methionine intake and the risk of breast cancer by oestrogen and progesterone receptor status. Br J Nutr 106(6):936–943

    Article  CAS  PubMed  Google Scholar 

  • Zhang WC et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272

    Article  CAS  PubMed  Google Scholar 

  • Zhang C et al (2013) IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro Oncol 15(9):1114–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q et al (1995) Glucose regulation of glucose transporters in cultured adult and fetal hepatocytes. Metabolism 44(12):1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Zheng MF, Shen SY, Huang WD (2013) DCA increases the antitumor effects of capecitabine in a mouse B16 melanoma allograft and a human non-small cell lung cancer A549 xenograft. Cancer Chemother Pharmacol 72(5):1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Zou J et al (2011) hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate 71:1518–1524

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Jörg Büscher, Peter Carmeliet, Katrien De Bock, Mark Keibler, and Sophia Lunt for thoughtful discussions and critical reading of the manuscript. SMF acknowledges support from Marie Curie CIG, FWO-Odysseus II, Concern Foundation, and Bayer HealthCare Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah-Maria Fendt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elia, I., Schmieder, R., Christen, S., Fendt, SM. (2015). Organ-Specific Cancer Metabolism and Its Potential for Therapy. In: Herzig, S. (eds) Metabolic Control. Handbook of Experimental Pharmacology, vol 233. Springer, Cham. https://doi.org/10.1007/164_2015_10

Download citation

Publish with us

Policies and ethics