Skip to main content

Structure and elasticity of non-crystalline polymer networks

  • Conference paper
  • First Online:
Fortschritte der Hochpolymeren-Forschung

Part of the book series: Advances in Polymer Science ((POLYMER,volume 6/1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VII. References

  1. Aldersley, J. W., and M. Gordon: Polyaddition and polycondensation-substitution effects in polycondensation systems. IUPAC Symposium on Macromolecular Chemistry, Prague 1965. Preprint p. 584.

    Google Scholar 

  2. Alexander, P., and A. Charlesby: Effect of X-rays on synthetic polymers in aqueous solution. J. Polymer Sci 23, 355 (1957).

    Article  CAS  Google Scholar 

  3. Alfrey, T., J. J. Bohrer, and H. Mark: Copolymerization, Chap. 9. New York: Interscience 1952.

    Google Scholar 

  4. —, and W. G. Lloyd: Network polymers. I. Theoretical remarks. J. Polymer Sci. 62, 159 (1962); see also Mazur, J., and T. Alfrey: Proc. Intern. Rubber Conf., Washington D. C. 1959, p. 378.

    Article  CAS  Google Scholar 

  5. Allen, G., U. Bianchi, and C. Price: Thermodynamics of elasticity of natural rubber. Trans. Faraday Soc. 59, 2493 (1963).

    Article  CAS  Google Scholar 

  6. —, G. Gee, M. C. Kirkham, C. Price, and J. Padget: A study of the elastic deformation of butyl rubber at constant volume. International Symposium on Macromolecular Chemistry, Tokyo 1966. Vol. 8, p. 1, Preprint 1.4.02.

    Google Scholar 

  7. — —, D. Mangaraj, D. Sims, and G. J. Wilson: Intermolecular forces and chain flexibilities in polymers. II. Internal Pressures of Polymers. Polymer 1, 467 (1960).

    Article  CAS  Google Scholar 

  8. Andrews, R. D., A. V. Tobolsky, and E. E. Hanson: Theory of permanent set at elevated temperatures in natural and synthetic rubber vulcanisates. J. Appl. Phys. 17, 352 (1946).

    Article  CAS  Google Scholar 

  9. Barshaw, J., and K. J. Smith: Thermoelasticity of networks in swelling equilibrium. J. Polymer Sci., Pt. A-2, 6, 1041 (1968)

    Google Scholar 

  10. Bekkedahl, N., and L. A. Wood: Crystallization of vulcanized rubber. Ind. Eng. Chem. 33, 381 (1941).

    Article  CAS  Google Scholar 

  11. Berkowich, J., A. Charlesby, and V. Desreux: Radiation effects on aqueous solutions of poly (vinyl alcohol). J. Polymer Sci. 25, 490 (1957).

    Article  Google Scholar 

  12. Bianchi, U., and E. Pedemonte: Rubber elasticity: Thermodynamic properties of deformed networks. J. Polymer Sci. Pt A-2, 5039 (1964).

    Google Scholar 

  13. Blanchard, A. F., and P. M. Wootton: Entanglements and other steric effects in crosslinked polymers. J. Polymer Sci. 34, 627 (1959).

    Article  CAS  Google Scholar 

  14. Blokland, R.: Elasticity and structure of polyurethane networks. Rotterdam: Universitaire Pers 1968.

    Google Scholar 

  15. Bobear, W. J.: Chain density in rubber networks. Rubber Chem. Technol. 40, 1560 (1967).

    CAS  Google Scholar 

  16. Booth, C., G. Gee, M. N. Jones, and W. D. Taylor: Studies in the thermodynamics of polymer-liquid systems. II. A reassessment of published data. Polymer 5, 353 (1964).

    CAS  Google Scholar 

  17. Borchard, W.: Quellungsdruckmessungen an Polystyrolgelen, Ph. D. Thesis, T. H. Aachen 1966.

    Google Scholar 

  18. Boyer, R. F.: Deswelling of gels by high polymer solution. J. Chem. Phys. 13, 363 (1945).

    Article  CAS  Google Scholar 

  19. Bruneau, C. M.: Théorie de graphes stochastiques appliquée à la synthèse et à la dégradation aléatoires des composés macromoléculaires multifonctionnels. Thesis, University of Paris 1966.

    Google Scholar 

  20. Description statistique de graphes aléatoires pouvant servir de modelle a des processus de “polyagrégation”. R.F.T.I.-Chiffres 9, 201 (1966).

    Google Scholar 

  21. Sur l'interprétation de la valeur infinie des degrés de polymerisation selon la théorie classique. Proposition d'un formalisme nouveau établi sur des bases topologiques et pour des systèmes macromoléculaires finis. Compt. Rend. C 264, 758 (1967).

    CAS  Google Scholar 

  22. Bruneau, C. M.: Sur une inconséquence formelle déduite du concept de gélification des composés macromoléculaires multifonctionnels selon la théorie classique. Nouvelle interprétation du phenomène de gélification. Compt. Rend. C 264, 1168 (1967).

    CAS  Google Scholar 

  23. Bueche, A. M.: An investigation of the theory of rubber elasticity using irradiated polydimethylsiloxanes. J. Polymer Sci. 19, 297 (1956).

    Article  CAS  Google Scholar 

  24. Bueche, F.: Physical properties of polymers. New York: Interscience 1962.

    Google Scholar 

  25. Cahn, J. W.: Phase separation by spinodial decomposition in isotropic systems. J. Chem. Phys. 42, 93 (1965).

    Article  CAS  Google Scholar 

  26. Case, L. C.: Molecular distribution in polycondensation involving unlike reactants. I. Gelation. J. Polymer Sci. 26, 333 (1957).

    Article  CAS  Google Scholar 

  27. Molecular distribution in polycondensation involving unlike reactants. II. Linear distributions. J. Polymer Sci. 29, 455 (1958).

    Article  CAS  Google Scholar 

  28. Branching in polymers. I. Network defects. J. Polymer Sci. 45, 397 (1960).

    Article  CAS  Google Scholar 

  29. Charlesby, A.: Gel formation and molecular weight distribution in long-chain polymers. Proc. Roy. Soc. (London) A 222, 542 (1954).

    CAS  Google Scholar 

  30. —, and S. H. Pinner: Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc. Roy. Soc. (London) A 249, 367 (1959).

    CAS  Google Scholar 

  31. Chömpff, A. J.: Linear viscoelasticity of entanglement networks. Thesis, T.H. Delft 1965.

    Google Scholar 

  32. —, and J. A. Duiser: Viscoelasticity of networks consisting of crosslinked or entangled macromolecules. I. Normal modes and mechanical spectra. J. Chem. Phys. 45, 1505 (1966).

    Article  Google Scholar 

  33. —, and W. Prins: Viscoelasticity of networks consisting of crosslinked or entangled macromolecules. II. Verification of the theory for entangled networks. J. Chem. Phys. 48, 235 (1968).

    Article  Google Scholar 

  34. Ciferri, A.: Present status of the rubber elasticity theory. J. Polymer Sci. 54, 149 (1961).

    Article  CAS  Google Scholar 

  35. —, and J. J. Hermans: Non-equilibrium effect in the stress-strain behaviour of rubber for the explanation of deviations from rubber elasticity theory. J. Polymer Sci. Pt. B-2, 1089 (1964).

    Google Scholar 

  36. Ciferri, A., and K. J. Smith: Phase changes in fibrous macromolecular systems and associated elasticity. Model phase diagrams. J. Polymer Sci. Pt. A-2, 731 (1964).

    Google Scholar 

  37. Crespi, G., and U. Flisi: Contribution of the internal energy to the retractive force of vulcanized cis-1,4-polybutadiene. Makromol. Chem. 60, 191 (1963).

    Article  CAS  Google Scholar 

  38. Dimarzio, E. A.: Contribution to a liquid-like theory of rubber elasticity. J. Chem. Phys. 36, 1563 (1962).

    Article  Google Scholar 

  39. Dobson, G. R., and M. Gordon: Configurational statistics of highly branched polymer systems. J. Chem. Phys. 41, 2389 (1964).

    Article  CAS  Google Scholar 

  40. — — Orientational entropy of crosslinks and the Mooney-Rivlin equation. Trans. Inst. Rubber Ind. 40, T262 (1964).

    Google Scholar 

  41. Dobson, G. R., and M. Gordon: Theory of branching processes and statistics of rubber elasticity. J. Chem. Phys. 43, 705 (1965); Rubber Chem. Technol. 39, 1472 (1966).

    Article  CAS  Google Scholar 

  42. Donkersloot, M. C. A., J. H. Gouda, J. J. van Aartsen, and W. Prins: Polymer gel structure elucidation by means of light scattering and photo-elasticity. Rec. Trav. Chim. Pays-Bas 86, 321 (1967).

    CAS  Google Scholar 

  43. Duiser, J. A., and A. J. Staverman: On the theory of rubber elasticity. In: Physics of non-crystalline solids (J. A. Prins, Ed.); p. 376. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  44. Dušek, K.: The heterogeneity and extent of intramolecular crosslinking in a system of Gaussian coils. Collection Czech. Chem. Commun. 33, 1100 (1968).

    Google Scholar 

  45. The formation of a three-dimensional network in the copolymerization of styrene and divinylbenzene. Collection Czech. Chem. Commun. 32, 1182 (1967).

    Google Scholar 

  46. Thermoelasticity of swollen styrene-divinylbenzene copolymers. Collection Czech. Chem. Commun. 32, 2264 (1967).

    Google Scholar 

  47. Structural parameters of crosslinked polystyrene determined from tension-deformation dependence and swelling in solvents of different activity. Collection Czech. Chem. Commun. 32, 1554 (1967).

    Google Scholar 

  48. Ionenaustauschergerüste III. Kopolymere des Styrols mit Divinylbenzol. Elastisches Verhalten der in Toluol gequollenen Kopolymeren. Collection Czech. Chem. Commun. 27, 2841 (1962).

    Google Scholar 

  49. — Phase separation during formation of three-dimensional networks. J. Polymer Sci. Pt. C-16, 1289 (1967).

    Google Scholar 

  50. —, and D. Patterson: Transition in swollen polymer networks induced by intramolecular condensation. J. Polymer Sci. Pt. A-2, 6, 1209 (1968).

    Article  Google Scholar 

  51. —, and B. Sedláček: Structure and properties of hydrophylic polymers and their gels. Microsyneresis in poly (ethylene glycol methacrylate) gels induced by a temperature change. Collection Czech. Chem. Commun. (in press).

    Google Scholar 

  52. Edwards, S. F.: Statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. (London) 85, 613 (1965).

    Article  CAS  Google Scholar 

  53. Elias, H. G., u. R. Bareiss: Association von Makromolekülen. Chimia 21, 53 (1967).

    CAS  Google Scholar 

  54. Ferry, J. D.: Viscoelastic properties of polymers. New York: Wiley 1961.

    Google Scholar 

  55. Flory, P.J.: Principles of polymer chemistry. Ithaca: Oxford Univ. Press 1953.

    Google Scholar 

  56. Principles of condensation polymerization. Chem. Rev. 39, 137 (1946).

    Article  CAS  Google Scholar 

  57. Theory of elastic mechanism in fibrous proteins. J. Am. Chem. Soc. 78, 5222 (1956).

    Article  CAS  Google Scholar 

  58. Statistical mechanics of swelling of network structures. J. Chem. Phys. 18, 108 (1950).

    Article  CAS  Google Scholar 

  59. Funke, W.: Über die Strukturaufklärung vernetzter Makromoleküle, insbesondere vernetzter Polyesterharze, mit chemischen Methoden. Advan. Polymer Sci. 4, 157 (1965).

    Article  CAS  Google Scholar 

  60. Gallacher, L., and F. A. Bettelheim: Light-scattering studies of crosslinking unsaturated polyesters with methyl acrylate. J. Polymer Sci. 58, 697 (1962).

    Article  CAS  Google Scholar 

  61. Gee, G., and W. J. C. Orr: The interaction between rubber and liquids. VIII. A new examination of the thermodynamic properties of the system rubber + benzene. Trans. Faraday Soc. 42, 507 (1946).

    Article  CAS  Google Scholar 

  62. The present status of the theory of rubber elasticity. Polymer 7, 373 (1966).

    Article  CAS  Google Scholar 

  63. The interaction between rubber and liquids. IX. The elastic behaviour of dry and swollen rubbers. Trans. Faraday Soc. 42, 585 (1946).

    Article  CAS  Google Scholar 

  64. Gee, G., J. B. M. Herbert, and R. C. Roberts: The vapour pressure of a swollen crosslinked elastomer. Polymer 6, 541 (1965).

    Article  CAS  Google Scholar 

  65. Gent, A. N., and V. V. Vickroy: Elastic behaviour, birefringence, and swelling of amorphous polyethylene networks. J. Polymer Sci. Pt. A-2, 47 (1967).

    Google Scholar 

  66. Gordon, M.: Good's theory of cascade processes and molecular weight averages of the sol fraction. Proc. Roy. Soc. (London) A 272, 54 (1963).

    Google Scholar 

  67. Configurational statistics of copolymer systems. Proc. Roy. Soc. (London) A 295, 29 (1966).

    CAS  Google Scholar 

  68. Polycondensation, récents progrès théoretiques et pratiques. Plastiques 4, (2), 111 (1967).

    CAS  Google Scholar 

  69. Gordon, M.: Private communication.

    Google Scholar 

  70. —, and R.-J. Roe: Diffusion and gelation in poly-addition. I. Vindication of the classical network theory of gelation. J. Polymer Sci. 21, 27 (1956).

    Article  CAS  Google Scholar 

  71. —, and G. R. Scantlebury: Non-random polycondensation: Statistical theory of the substitution effect. Trans. Faraday Soc. 60, 604 (1964).

    Article  CAS  Google Scholar 

  72. — —Theory of ring chain equilibria in branched non-random polycondensation systems, with application to POCl 3/P2O5. Proc. Roy. Soc. (London) A 292, 380 (1966).

    CAS  Google Scholar 

  73. — — Statistical kinetics of polyesterification of adipic acid with pentaerythritol and trimethylolethane. J. Chem. Soc. 1967, 1.

    Google Scholar 

  74. — — The theory of branching processes and kinetically controlled ring-chain equilibria. IUPAC Symposium on Macromolecular Chemistry, Prague 1965. Preprint P 513.

    Google Scholar 

  75. Greene, A., and A. Ciferri: Elastic properties of networks formed from oriented chain molecules of fibrous natural rubber. Kolloid-Z. 186, 1 (1962).

    Article  CAS  Google Scholar 

  76. Guth, E.: Statistical mechanics of polymers. J. Polymer Sci. Pt. C, 12, 89 (1966).

    Google Scholar 

  77. Halpin, J. C.: The nonlinear response and rupture of lightly crosslinked elastomers. J. Polymer Sci. Pt. C, 16, 1037 (1967).

    Google Scholar 

  78. Harris, T. E.: Theory of branching processes. Berlin-Göttingen-Heidelberg: Springer, 1963.

    Google Scholar 

  79. Hasa, J., and J. Janáček: Effect of diluent content during polymerization on equilibrium deformational and structural parameters of polymer networks. J. Polymer Sci. Pt. C, 16, 317 (1967).

    Google Scholar 

  80. Haward, R. N., and W. Simpson: Intramolecular reaction in the styrene-divinylbenzene system. J. Polymer Sci. 18, 440 (1955).

    Article  CAS  Google Scholar 

  81. Henglein, A.: Crosslinking of polymers in solution under the influence of γ-radiation. J. Phys. Chem. 63, 1852 (1959).

    Article  CAS  Google Scholar 

  82. Hermans, J. J.: Deformation and swelling of polymer networks containing comparatively long chains. Trans. Faraday Soc. 43, 591 (1947).

    Article  CAS  Google Scholar 

  83. Statistical thermodynamics of swollen polymer networks. J. Polymer Sci. 59, 191 (1962).

    Article  CAS  Google Scholar 

  84. The behaviour of rubber-like material when stretched. J. Colloid Sci. 1, 235 (1946).

    Article  CAS  Google Scholar 

  85. Hill, T. L.: An introduction to statistical thermodynamics, Chap. 13. Reading: Addison-Wesley 1960.

    Google Scholar 

  86. Hoeve, C. A. J., A. Ciferri, and P. J. Flory: Elasticity of crosslinked amorphous polymers in swelling equilibrium with diluents. J. Polymer Sci. 45, 235 (1960).

    Article  Google Scholar 

  87. —, and P. J. Flory: Elasticity of crosslinked amorphous polymers in swelling equilibrium with diluents. J. Polymer Sci. 60, 155 (1962).

    Article  CAS  Google Scholar 

  88. Hoeve, C. A. J.., and A. Ciferri: Limitations of the application to semicrystalline fibers of thermoelastic relations for high elastic materials: A reply to W. Prins. J. Polymer Sci. 60, 68 (1962).

    Article  Google Scholar 

  89. —, and M. K. O'Brien: Specific diluent effects on polymer chain dimensions. J. Polymer Sci. Pt. A, 1, 1947 (1963).

    Article  CAS  Google Scholar 

  90. Holt, T., and W. Simpson: Observation on intramolecular reaction in addition polymerization systems. Proc. Roy. Soc. (London), A 238, 154 (1956).

    CAS  Google Scholar 

  91. Horn, P.: Ph. D. Thesis, Strasbourg 1955.

    Google Scholar 

  92. Howard, G. J.: The molecular weight distribution of condensation polymers. In: Progress in high polymers. (J. C. Robb and F. W. Peaker, Ed.), p. 185. London: Heywood 1961.

    Google Scholar 

  93. Hulst, H. C. van de: Light scattering by small particles. New York: Jon Wiley and Sons 1964; see also Heller, W.: Proc. interdisciplinary conference on electromagnetic scattering (M. Kerker, Ed.), p. 101. Oxford: Pergamon Press 1963.

    Google Scholar 

  94. Jackson, J. F., and S. J. Gill: Elastic properties of crosslinked poly (vinyl alcohol) gels. Network topology. J. Polymer Sci. Pt. A-2, 5, 663 (1967).

    Article  CAS  Google Scholar 

  95. Jackson, J. L., M. C. Shen, and D. A. McQuarrie: Intermolecular obstruction in rubber elasticity theory. J. Chem. Phys. 44, 2388 (1966).

    Article  CAS  Google Scholar 

  96. Jacobson, H., and W. H. Stockmayer: Intermolecular reaction in polycondensation. I. Theory of linear systems. J. Chem. Phys. 18, 1600 (1950).

    Article  CAS  Google Scholar 

  97. James, H. M.: Statistical properties of networks of flexible chains. J. Chem. Phys. 15, 651 (1947).

    Article  CAS  Google Scholar 

  98. —, and E. Guth: Theory of the increase in rigidity of rubber during cure. J. Chem. Phys. 15, 669 (1947).

    Article  CAS  Google Scholar 

  99. — —Statistical thermodynamics of rubber elasticity. J. Chem. Phys. 21, 1039 (1953).

    Article  CAS  Google Scholar 

  100. Kargin, V. A., Z. Ya. Berestneva, and V. G. Kalashnikova: Supermolecular structures in rubber. Uspekhi Khim. 36, 203 (1967).

    CAS  Google Scholar 

  101. Khasanovich, T. N.: The role of volume effects in the theory of deformation of network polymers. Zh. Tekhn. Fiz. 28, 1437 (1958).

    Google Scholar 

  102. The excluded volume in the theory of deformation of swollen network polymers. Vysokomolekul. Soedin. 1, 1659 (1959).

    Google Scholar 

  103. Kilb, R. W.: Dilute gelling systems. I. The effect of ring formation on gelation. J. Phys. Chem. 62, 969 (1958).

    Article  CAS  Google Scholar 

  104. Knibbe, D. E.: Diffusion-controlled stress relaxation of swollen rubberlike networks. Rotterdam: University Press 1968.

    Google Scholar 

  105. Kraats, E. J. van de, M. A. M. Winkeler, J. M. Potters, and W. Prins: Polymer network characterization by means of swelling pressure and unilateral compression data. Rec. Trav. Chim. Pays-Bas (in press).

    Google Scholar 

  106. — On elasticity and swelling. Ph. D. Thesis, TH Delft 1967.

    Google Scholar 

  107. Kraus, G.: Quantitative characterization of polybutadiene networks. J. Appl. Polymer Sci. 7, 1257 (1963).

    Article  CAS  Google Scholar 

  108. —, and G. A. Moczygemba: Chain entanglements and elastic behaviour of polybutadiene networks. J. Polymer Sci., Pt. A, 2, 277 (1964).

    Article  Google Scholar 

  109. Krigbaum, W. R., and D. K. Carpenter: Phase-equilibria in polymer-liquid 1-liquid 2-systems. J. Polymer Sci. 14, 241 (1954).

    Article  CAS  Google Scholar 

  110. —, and R. W. Godwin: Direct measurement of molecular dimensions in bulk polymers. J. Chem. Phys. 43, 4523 (1965).

    Article  CAS  Google Scholar 

  111. —, and M. Kaneko: Cubic lattice model chain. J. Chem. Phys. 36, 99 (1962).

    Article  CAS  Google Scholar 

  112. —, and R.-J. Roe: Survey of the theory of rubberlike elasticity. Rubber Chem. Technol. 38, 1039 (1965).

    CAS  Google Scholar 

  113. Kuhn, W., and G. Balmer: Crosslinking of single linear macromolecules. J. Polymer Sci. 57, 311 (1962).

    Article  CAS  Google Scholar 

  114. —, u. F. Grün: Beziehung zwischen elastischen Konstanten und Dehnungs-doppelbrechung hochelastischer Stoffe. Kolloid-Z. 101, 248 (1942).

    Article  CAS  Google Scholar 

  115. —, u. H. Mayer: Die Selbstvernetzung von Fadenmolekülen. Makromol. Chem. 18, 239 (1955).

    Article  Google Scholar 

  116. Kvasnikov, I. A.: The application of Ising's model in the statistical theory of high elasticity. Vysokomolekul. Soedin. 3, 1617 (1961).

    Google Scholar 

  117. Kwei, T. K.: Swelling of highly crosslinked network structures. J. Polymer Sci., Pt. A 1, 2977 (1963).

    Google Scholar 

  118. Liquori, A. M., G. Anzuino, V. M. Coiro, M. D'Alagni, P. DeSantis, and M. Sarino: Complementary stereospecific interaction between isotactic and syndiotactic polymer molecules. Nature 206, 358 (1965).

    CAS  Google Scholar 

  119. Manfee, E., and W. L. Peticolas: Polymers and the theory of numbers: Molecular weight distribution from rheological measurements. Nature 189, 745 (1961).

    Google Scholar 

  120. Mayo, F. R., and F. M. Lewis: Copolymerization. I. A basis for comparing the behaviour of monomers in copolymerization: the copolymerization of styrene and methyl methacrylate. J. Am. Chem. Soc. 66, 1594 (1944).

    Article  CAS  Google Scholar 

  121. Meissner, B.: Structure and network chain concentration of rubber. IUPAC Symposium on Macromolecular Chemistry, Prague 1965, Preprint 100.

    Google Scholar 

  122. — Stress-strain properties and structure of poly (dimethylsiloxane) networks. Microsymposium on macromolecules: Polymer gels and concentrated solutions. Inst. of Macromolecular Chemistry, Prague 1967, E6.

    Google Scholar 

  123. Mijnlieff, P. F., and W. J. M. Jaspers: Thermodynamics of swelling of polymer-network gels. Analysis of excluded volume effects in polymer solutions and polymer networks. J. Polymer Sci. A-2 (in press).

    Google Scholar 

  124. Minnema, L., and A. J. Staverman: The validity of the theory of gelation in vinyl-divinyl copolymerization. J. Polymer Sci. 29, 281 (1958).

    Article  CAS  Google Scholar 

  125. Moore, W. R., and R. Shuttleworth: Thermodynamic properties of solutions of cellulose acetate and cellulose nitrate. J. Polymer Sci., Pt. A. 1, 733 (1963).

    CAS  Google Scholar 

  126. Mukherji, B., and W. Prins: Applicability of polymer network theories to gels obtained by crosslinking a polymer in solution. J. Polymer Sci., Pt. A 2, 4367 (1964).

    Article  CAS  Google Scholar 

  127. Mullins, L.: Determination of degree of crosslinking in natural rubber vulcanizates. I. J. Polymer Sci. 19, 225 (1956).

    Article  CAS  Google Scholar 

  128. Determination of degree of crosslinking in natural rubber vulcanizates. IV. Stress-strain behaviour at large extensions. J. Appl. Pol. Sci. 2, 257 (1959).

    Article  CAS  Google Scholar 

  129. —, and A. G. Thomas: Determination of degree of crosslinking in natural rubber vulcanizates. V. Effect of network flaws due to free chain ends. J. Polymer Sci. 43, 13 (1960).

    Article  CAS  Google Scholar 

  130. — —Theory of rubberlike elasticity. In: The chemistry and physics of rubberlike substances (L. Bateman, Ed.), p. 155. London: McLaren 1963.

    Google Scholar 

  131. Nanda, V. S., and R. K. Pathria: Polymers and theory of numbers I. The single-chain theory of degradation. J. Chem. Phys. 30, 27 (1959).

    Article  CAS  Google Scholar 

  132. Opschoor, A., and W. Prins: Thermoelasticity and conformational behaviour of polyethylene and ethylene-propylene copolymers. J. Polymer Sci., Pt. C 16, 1095 (1967).

    Google Scholar 

  133. Palmen, H. J.: Diplomarbeit, TH Aachen 1960.

    Google Scholar 

  134. Picot, C.: Etude de la diffusion de la lumière par des disques anisotropes. Ph. D. Thesis, Strasbourg, 1968.

    Google Scholar 

  135. Price, F. P.: Dilute gelling systems. III. Polyalkoxysilanes. J. Phys. Chem. 62, 977 (1958).

    Article  CAS  Google Scholar 

  136. —, J. H. Gibbs, and B. H. Zimm: Dilute gelling systems. II. Polyesters. J. Phys. Chem. 62, 972 (1958).

    Article  CAS  Google Scholar 

  137. Prins, W.: Elastic deformation of amorphous and swollen polymer networks. In: Physics of non-crystalline solids (J. A. Prins, Ed.), p. 360. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  138. Priss, L. S.: Study of the dependence of C1 and C2 constants on time and grosslink density in the unfilled vulcanizates. Macrosymposium on Macromolecules: Polymer Gels and Concentrated Solutions, Inst. of Macromolecular Chemistry, Prague 1967, E 1.

    Google Scholar 

  139. Ptitsyn, O. B., A. K. Kron, and Yu. E. Eizner: The models of the denaturation of globular proteins. I. Theory of globule-coil transitions in macromolecules. IUPAC Symposium on Macromolecular Chemistry, Prague 1965, Preprint 474.

    Google Scholar 

  140. Rehage, G.: Zur Thermodynamik der Quellung I, II, III. Kolloid-Z. Z. Polymere 194, 16 (1964); 196, 17 (1964); 199, 1 (1964).

    Article  CAS  Google Scholar 

  141. Rivlin, R. S.: In: Rheology (F. R. Eirich, Ed.). Vol. 1, Chap. 10. New York: Academic Press 1956.

    Google Scholar 

  142. —, and D. W. Saunders: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. A 243, 251 (1951).

    Google Scholar 

  143. Roberts, D. E., and L. Mandelkern: Some properties of polymer networks formed from oriented chains of natural rubber. J. Am. Chem. Soc. 80, 1289 (1958).

    Article  CAS  Google Scholar 

  144. Robertson, R. E.: Polymer order and polymer density. J. Phys. Chem. 69, 1575 (1965).

    CAS  Google Scholar 

  145. Roe, R. J., and W. R. Krigbaum: The contribution of energy to the elastic force of natural rubber. J. Polymer Sci. 61, 167 (1962).

    Article  CAS  Google Scholar 

  146. — —A thermodynamics study of viton elastomer. J. Polymer Sci., Pt. A 1, 2049 (1963).

    Google Scholar 

  147. Rijke, A. M.: Crosslinking in solution. Studies on cellulose acetate networks. Ph. D. Thesis, University Leiden 1961.

    Google Scholar 

  148. Excluded volume effects in swollen polymeric networks. J. Polymer Sci., Pt. A, 3, 3523 (1965).

    CAS  Google Scholar 

  149. —, and W. Prins: The swelling of cellulose acetate networks obtained by crosslinking in solution. J. Polymer Sci. 59, 171 (1962).

    Article  CAS  Google Scholar 

  150. —, and G. L. Taylor: Stress-strain behaviour of swollen polymeric networks. J. Polymer Sci., Pt. A-1, 5, 1433 (1967).

    CAS  Google Scholar 

  151. Ryser, H. J.: Combinatorial mathematics. New York: J. Wiley 1965.

    Google Scholar 

  152. Sadron, C.: Les polymères organisés. Pure Appl. Chem. 4, 347 (1962).

    Article  CAS  Google Scholar 

  153. Ungleichmäßig lösliche Makromoleküle-Heterogele und Heteropolymere. Angew. Chem. 75, 472 (1963).

    CAS  Google Scholar 

  154. Sadron, C.: Les copolymères organisés. Chim. Ind. 96, 507 (1966).

    CAS  Google Scholar 

  155. Scanlan, J.: Effect of network flaws on the elastic properties of vulcanizates. J. Polymer Sci. 43, 501 (1960).

    Article  CAS  Google Scholar 

  156. Sedláček, B.: Structure and properties of hydrophylic polymers and their gels. VII. Turbidity changes of polymeric gels poly (ethylene glycol methacrylate)-glycol-water. Collection Czech. Chem. Commun. 32, 1398 (1967).

    Google Scholar 

  157. Seidl, J., J. Malinský, K. Dušek, u. W. Heitz: Makroporöse Styrol-Divinylbenzol-Copolymere und ihre Anwendung in der Chromatographie und zur Darstellung von Ionenaustauschern. Advanc. Polymer Sci. 5, 113 (1967).

    CAS  Google Scholar 

  158. Shen, M. C., D. A. McQuarrie, and J. L. Jackson: Thermoelastic behaviour of natural rubber. J. Appl. Phys. 38, 791 (1967).

    Article  CAS  Google Scholar 

  159. Smith, K. J., A. Ciferri, and J. J. Hermans: Anisotropic elasticity of composite molecular networks formed from non-Gaussian chains. J. Polymer Sci., Pt. A, 2, 1025 (1964).

    Article  CAS  Google Scholar 

  160. Smith, T.L.: Large deformation tensile properties of elastomers. I. Temperature dependence of C1 and C2 in the Mooney-Rivlin equation. J. Polymer Sci., Pt. C 16, 841 (1967).

    Google Scholar 

  161. Spit, B. J.: Gas discharge etching as a new approach in electron microscopy research into high polymers. Polymer 4, 109 (1963).

    Article  CAS  Google Scholar 

  162. Solomon, D. H.: A reassessment of the theory of polyesterification with particular reference to alkyd resins. J. Makromol. Sci., Pt. C, 1, 179 (1967).

    Article  CAS  Google Scholar 

  163. Sperling, L. H., and A. V. Tobolsky: Thermoelastic properties of poly (dimethyl siloxane) and poly (ethyl acrylate) as a function of temperature. J. Makromol. Sci. 1, 799 (1966).

    CAS  Google Scholar 

  164. Staverman, A. J.: Thermodynamics of polymers. In: Encyclopedia of physics (S. Flügge, Ed.) Vol. 13. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  165. Stockmayer, W. H.: Molecular size distribution in high polymers. In: Advancing fronts in chemistry I, p. 47. New York: Reinhold 1945.

    Google Scholar 

  166. —, and M. Fixman: On the estimation of unperturbed dimensions from intrinsic viscosities. J. Polymer Sci., Pt. C, 1, 137 (1963).

    Google Scholar 

  167. Thirion, P., et R. Chasset: Sur une relation empirique entre le déploiement des chaines de réseaux macromoleculaires et les déformations macroscopiques. Loi de comportement élastique à l'état sec. Compt. Rend. C 264, 958 (1967).

    Google Scholar 

  168. — —Relaxation viscoélastique des vulcanisats de cautchouch en extension. Chim. Ind., Génie Chim. 97, 617 (1967).

    CAS  Google Scholar 

  169. Tobolsky, A. V.: Ph. D. Thesis, Princeton University 1944.

    Google Scholar 

  170. —, D. W. Carlson, and N. Indictor: Rubber elasticity and chain configuration. J. Polymer Sci. 54, 175 (1961).

    Article  CAS  Google Scholar 

  171. —, D. L. Metz, and R. B. Mesrobian: Low temperature autoxidation of hydrocarbons: the phenomenon of maximum rates. J. Am. Chem. Soc. 72, 1942 (1950).

    Article  CAS  Google Scholar 

  172. Treloar, L.R.G.: The physics of rubber elasticity. Oxford: Clarendon Press 1958.

    Google Scholar 

  173. Van der Hoff, B. M. E., and E. J. Buckler: Transient changes in topology and energy on extension of polybutadiene networks. J. Macromol. Sci. (Chem.) A 1 (4), 747 (1967).

    Google Scholar 

  174. Volkenstein, M. V.: Configurational statistics of polymer chains. New York: Interscience 1963.

    Google Scholar 

  175. —, Yu. Ya. Gotlib, and O. B. Ptitsyn: Theory of high elasticity of rubbers. Vysokomolekul. Soedin. 1, 1056 (1959).

    Google Scholar 

  176. Wall, F. T.: Statistical thermodynamics of rubber. III. J. Chem. Phys. 11, 527 (1943).

    Article  CAS  Google Scholar 

  177. —, and P. J. Flory: Statistical theory of rubber elasticity. J. Chem. Phys. 19, 1435 (1951).

    Article  CAS  Google Scholar 

  178. Walling, C.: Gel formation in addition polymerization. J. Am. Chem. Soc. 67, 441 (1945).

    Article  Google Scholar 

  179. Wang, M. C., and E. Guth: Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144 (1952).

    Article  Google Scholar 

  180. Wesslau, H.: Strukturabhängige Ringschluß-Reaktionen bei der vernetzenden Copolymerisation. Makromol. Chem. 93, 55 (1966).

    Article  CAS  Google Scholar 

  181. Whittle, P.: Statistical processes of aggregation and polymerization. Proc. Cambridge Phil. Soc. 61, 475 (1965).

    Article  Google Scholar 

  182. The equilibrium statistics of a clustering process in the uncondensed phase. Proc. Roy. Soc. (London) 285, 501 (1965).

    Google Scholar 

  183. Wesslau, H.: Zur Kenntnis der vernetzenden Copolymerisation. Angew. Makromol. Chem. 1, 56 (1967).

    Article  CAS  Google Scholar 

  184. Yamamoto, K., S. Kusamizu, and H. Fujita: Thermoelasticity of rubber vulcanizates. I. Makromol. Chem. 99, 212 (1966).

    Article  CAS  Google Scholar 

  185. Zimm, B. H., F. P. Price, and J. P. Bianchi: Dilute gelling systems. IV. Divinylbenzene-styrene copolymers. J. Phys. Chem. 62, 979 (1958).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag

About this paper

Cite this paper

Dušek, K., Prins, W. (1969). Structure and elasticity of non-crystalline polymer networks. In: Fortschritte der Hochpolymeren-Forschung. Advances in Polymer Science, vol 6/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0051042

Download citation

  • DOI: https://doi.org/10.1007/BFb0051042

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04397-3

  • Online ISBN: 978-3-540-35943-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics