Skip to main content

Approximation Scheme for Lowest Outdegree Orientation and Graph Density Measures

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

We deal with the problem of finding such an orientation of a given graph that the largest number of edges leaving a vertex (called the outdegree of the orientation) is small.

For any ε∈(0,1) we show an \(\tilde{O}(|E(G)|/\varepsilon)\) time algorithm which finds an orientation of an input graph G with outdegree at most ⌈(1+ε)d *⌉, where d * is the maximum density of a subgraph of G. It is known that the optimal value of orientation outdegree is ⌈d * ⌉.

Our algorithm has applications in constructing labeling schemes, introduced by Kannan et al. in [18] and in approximating such graph density measures as arboricity, pseudoarboricity and maximum density. Our results improve over the previous, 2-approximation algorithms by Aichholzer et al. [1] (for orientation / pseudoarboricity), by Arikati et al. [3] (for arboricity) and by Charikar [5] (for maximum density).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Aurenhammer, F., Rote, G.: Optimal graph orientation with storage applications. SFB-Report F003-51, SFB Optimierung und Kontrolle, TU Graz, Austria (1995)

    Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arikati, S.R., Maheshwari, A., Zaroliagis, C.D.: Efficient computation of implicit representations of sparse graphs. Discrete Appl. Math. 78(1-3), 1–16 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 342–351. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theoretical Computer Science 86(2), 243–266 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett. 51(4), 207–211 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eppstein, D.: All maximal independent sets and dynamic dominance for sparse graphs. In: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 451–459 (2005)

    Google Scholar 

  10. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J. Comput. 4(4), 507–518 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frank, A., Gyárfás, A.: How to orient the edges of a graph? In: Hajnal, A., Sós, V.T. (eds.) Proc. of the Fifth Hungarian Colloquium on Combinatorics, Keszthely, vol. I, pp. 353–364. North-Holland, Amsterdam (1976)

    Google Scholar 

  12. Gabow, H.: Upper degree-constrained partial orientations. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006) (2006)

    Google Scholar 

  13. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid sums and applications. In: Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 407–421. ACM Press, New York (1988)

    Chapter  Google Scholar 

  14. Galil, Z., Naamad, A.: An O(EVlog2 V) algorithm for the maximal flow problem. J. Comput. System Sci. 21, 203–217 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldberg, A.V.: Finding a maximum density subgraph. Technical Report UCB/CSD-84-171, EECS Department, University of California, Berkeley (1984)

    Google Scholar 

  17. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. In: Proc. of the 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), p. 2. IEEE Computer Society Press, Washington, DC, USA (1997)

    Chapter  Google Scholar 

  18. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 334–343. ACM Press, New York (1988)

    Chapter  Google Scholar 

  19. Kowalik, Ł., Kurowski, M.: Shortest path queries in planar graphs in constant time. In: Proc. 35th Symposium on Theory of Computing (STOC 2003), pp. 143–148. ACM, New York (2003)

    Google Scholar 

  20. Kozen, D.C.: The design and analysis of algorithms. Springer, New York (1992)

    Google Scholar 

  21. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. Journal of the London Mathematical Society 39, 12 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  22. Picard, J.-C., Queyranne, M.: A network flow solution to some nonlinear 0-1 programming problems with application to graph theory. Networks 12, 141–159 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowalik, Ł. (2006). Approximation Scheme for Lowest Outdegree Orientation and Graph Density Measures. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_56

Download citation

  • DOI: https://doi.org/10.1007/11940128_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics