Skip to main content

Valiant’s Model: From Exponential Sums to Exponential Products

  • Conference paper
Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

We study the power of big products for computing multivariate polynomials in a Valiant-like framework. More precisely, we define a new class VΠP0 as the set of families of polynomials that are exponential products of easily computable polynomials. We investigate the consequences of the hypothesis that these big products are themselves easily computable. For instance, this hypothesis would imply that the nonuniform versions of P and NP coincide. Our main result relates this hypothesis to Blum, Shub and Smale’s algebraic version of P versus NP. Let K be a field of characteristic 0. Roughly speaking, we show that in order to separate P K from NP K using a problem from a fairly large class of “simple” problems, one should first be able to show that exponential products are not easily computable. The class of “simple” problems under consideration is the class of NP problems in the structure (K,+,–,=), in which multiplication is not allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Two theorems on random polynomial time. In: Proceedings of the 19th IEEE symposium on foundations of computer science, October 1978, pp. 75–83 (1978)

    Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21(1), 1–46 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Fournier, H., Koiran, P.: Are lower bounds easier over the reals? In: Proc. 30th ACM Symposium on Theory of Computing, pp. 507–513 (1998)

    Google Scholar 

  6. Fournier, H., Koiran, P.: Lower bounds are not easier over the reals: Inside PH. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 832–843. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Heintz, J., Morgenstern, J.: On the intrinsic complexity of elimination theory. Journal of Complexity 9, 471–498 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Karp, R.M., Lipton, R.J.: Turing machines that take advice. L’enseignement mathématique 28, 191–209 (1982)

    MATH  MathSciNet  Google Scholar 

  9. Koiran, P.: Valiant’s model and the cost of computing integers. Computational Complexity 13, 131–146 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Koiran, P.: Computing over the reals with addition and order. Theoretical Computer Science 133(1), 35–48 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lipton, R.J.: Straight-line complexity and integer factorization. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 71–79. Springer, Heidelberg (1994)

    Google Scholar 

  12. Malod, G.: Polynmes et coefficients. PhD thesis, Universit Claude Bernard Lyon (July 1, 2003)

    Google Scholar 

  13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  14. Poizat, B.: Les petits cailloux. Aléas (1995)

    Google Scholar 

  15. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27(4), 701–717 (1980)

    Article  MATH  Google Scholar 

  16. Shub, M., Smale, S.: On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “NP ≠ P?”. Duke Math. Journal 81(1), 47–54 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM Symposium on Theory of Computing, pp. 249–261 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koiran, P., Perifel, S. (2006). Valiant’s Model: From Exponential Sums to Exponential Products. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_52

Download citation

  • DOI: https://doi.org/10.1007/11821069_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics