Skip to main content

An Algorithm for the SAT Problem for Formulae of Linear Length

  • Conference paper
Algorithms – ESA 2005 (ESA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3669))

Included in the following conference series:

Abstract

We present an algorithm that decides the satisfiability of a CNF formula where every variable occurs at most k times in time \(O(2^{N(1-c/(k+1)+O(1/k^{2}))})\) for some c (that is, O(α N) with α< 2 for every fixed k). For k ≤ 4, the results coincide with an earlier paper where we achieved running times of O(20.1736 N) for k = 3 and O(20.3472N) for k = 4 (for k ≤ 2, the problem is solvable in polynomial time). For k>4, these results are the best yet, with running times of O(20.4629N) for k = 5 and O(20.5408N) for k = 6. As a consequence of this, the same algorithm is shown to run in time O(20.0926L) for a formula of length (i.e.total number of literals) L. The previously best bound in terms of L is O(20.1030L). Our bound is also the best upper bound for an exact algorithm for a 3sat formula with up to six occurrences per variable, and a 4sat formula with up to eight occurrences per variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for 3-SAT. Theoretical Computer Science 329(1-3), 303–313 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2SAT and 3SAT formulae. Theoretical Computer Science 332(1-3), 265–291 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dantsin, E., Hirsch, E.A., Wolpert, A.: Algorithms for SAT based on search in Hamming balls. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 141–151. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Dantsin, E., Wolpert, A.: Derandomization of Schuler’s algorithm for SAT. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 69–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Dantsin, E., Wolpert, A.: An improved upper bound for SAT. Technical Report TR05-030, Electronic Colloquium on Computational Complexity (2005)

    Google Scholar 

  7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Hirsch, E.A.: New worst-case upper bounds for SAT. Journal of Automated Reasoning 24(4), 397–420 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p. 328 (2004)

    Google Scholar 

  11. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science 223, 1–72 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica 32(4), 615–623 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. Journal of Algorithms 54(1), 40–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wahlström, M.: Faster exact solving of SAT formulae with a low number of occurrences per variable. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 309–323. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wahlström, M. (2005). An Algorithm for the SAT Problem for Formulae of Linear Length. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_12

Download citation

  • DOI: https://doi.org/10.1007/11561071_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29118-3

  • Online ISBN: 978-3-540-31951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics