Skip to main content

Derandomization of Schuler’s Algorithm for SAT

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3542))

Abstract

Recently Schuler [17] presented a randomized algorithm that solves SAT in expected time at most \(2^{n(1-1/{\rm log}_{2}(2m))}\) up to a polynomial factor, where n and m are, respectively, the number of variables and the number of clauses in the input formula. This bound is the best known upper bound for testing satisfiability of formulas in CNF with no restriction on clause length (for the case when m is not too large comparing to n). We derandomize this algorithm using deterministic k-SAT algorithms based on search in Hamming balls, and we prove that our deterministic algorithm has the same upper bound on the running time as Schuler’s randomized algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumer, S., Schuler, R.: Improving a probabilistic 3-SAT algorithm by dynamic search and independent clause pairs. Electronic Colloquium on Computational Complexity, Report No. 10 (February 2003)

    Google Scholar 

  2. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dantsin, E., Goerdt, A., Hirsch, E.A., Schöning, U.: Deterministic algorithms for k-SAT based on covering codes and local search. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 236–247. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Dantsin, E., Hirsch, E.A., Wolpert, A.: Algorithms for SAT based on search in Hamming balls. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 141–151. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5, 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hirsch, E.A.: New worst-case upper bounds for SAT. Journal of Automated Reasoning 24(4), 397–420 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: A probabilistic 3-SAT algorithm further improved. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 192–202. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. Electronic Colloquium on Computational Complexity, Report No. 53 (July 2003)

    Google Scholar 

  10. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science 223(1-2), 1–72 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1998, pp. 628–637 (1998)

    Google Scholar 

  12. Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1997, pp. 566–574 (1997)

    Google Scholar 

  13. Pudlák, P.: Satisfiability — algorithms and logic. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 129–141. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Rolf, D.: 3-SAT in RTIME(O(1.32793n)) — improving randomized local search by initializing strings of 3-clauses. Electronic Colloquium on Computational Complexity, Report No. 54 (July 2003)

    Google Scholar 

  15. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1999, pp. 410–414 (1999)

    Google Scholar 

  16. Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica 32(4), 615–623 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. To appear in Journal of Algorithms (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dantsin, E., Wolpert, A. (2005). Derandomization of Schuler’s Algorithm for SAT. In: Hoos, H.H., Mitchell, D.G. (eds) Theory and Applications of Satisfiability Testing. SAT 2004. Lecture Notes in Computer Science, vol 3542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527695_7

Download citation

  • DOI: https://doi.org/10.1007/11527695_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27829-0

  • Online ISBN: 978-3-540-31580-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics