Skip to main content

Generalized Planted (l,d)-Motif Problem with Negative Set

  • Conference paper
Algorithms in Bioinformatics (WABI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3692))

Included in the following conference series:

Abstract

Finding similar patterns (motifs) in a set of sequences is an important problem in Computational Molecular Biology. Pevzner and Sze [18] defined the planted (l,d)-motif problem as trying to find a length-l pattern that occurs in each input sequence with at most d substitutions. When d is large, this problem is difficult to solve because the input sequences do not contain enough information on the motif. In this paper, we propose a generalized planted (l,d)-motif problem which considers as input an additional set of sequences without any substring similar to the motif (negative set) as extra information. We analyze the effects of this negative set on the finding of motifs, and define a set of unsolvable problems and another set of most difficult problems, known as “challenging generalized problems”. We develop an algorithm called VANS based on voting and other novel techniques, which can solve the (9,3), (11,4),(15,6) and (20,8)-motif problems which were unsolvable before as well as challenging problems of the planted (l,d)-motif problem such as (9,2), (11,3), (15,5) and (20,7)-motif problems.

This research is supported in part by an RGC grant HKU 7135/04E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, T., Charles Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning 21, 51–80 (1995)

    Google Scholar 

  2. Barash, Y., Bejerano, G., Friedman, N.: A Simple Hyper-Geometric Approach for Discovering Putative Transcription Factor Binding Sites. Workshop on Algorithms in Bioinformatics WABI 1, 278–293 (2001)

    Article  Google Scholar 

  3. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic discovery of patterns in biosequences. Jour. Comp. Biol. 5, 279–305 (1998)

    Article  Google Scholar 

  4. Buhler, J., Tompa, M.: Finding motifs using random projections. Research in Computational Molecular Biology RECOMB 1, 69–76 (2001)

    Google Scholar 

  5. Chin, F., Leung, H.: Voting Algorithms for Discovering Long Motifs. Asia-Pacific Bioinformatics Conference APBC 3, 261–271 (2005)

    Article  Google Scholar 

  6. Chin, F., Leung, H., Yiu, S.M., Lam, T.W., Rosenfeld, R., Tsang, W.W., Smith, D., Jiang, Y.: Finding Motifs for Insufficient Number of Sequences with Strong Binding to Transcription Factor. Research in Computational Molecular Biology RECOMB 4, 125–132 (2004)

    Google Scholar 

  7. Chin, F., Leung, H., Yiu, S.M., Rosenfeld, R., Tsang, W.W.: Finding Motifs with Insufficient Number of Strong Binding Sites. Jour. Comp. Biol. (to appear)

    Google Scholar 

  8. Fraenkel, Y., Mandel, Y., Friedberg, D., Margalit, H.: Identification of common motifs in unaligned dna sequences: application to Escherichia coli Lrp regulon. Bioinformatics 11, 379–387 (1995)

    Article  Google Scholar 

  9. Gelfand, M., Koonin, E., Mironov, A.: Prediction of transcription regulatory sites in archaea by a comparative genomic approach. Nucl. Acids Res. 28, 695–705 (2000)

    Article  Google Scholar 

  10. van Helden, J., Andre, B., Vides, J.C.: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. Journal of Molecular Biology 281(5), 827–842 (1998)

    Article  Google Scholar 

  11. Hertz, G.Z., Stormo, G.D.: Identification of consensus patterns in unaligned dna and protein sequences: a large-deviation statistical basis for penalizing gaps. International Conference on Bioinformatics and Genome Research 3, 201–216 (1995)

    Google Scholar 

  12. Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A., Wootton, J.: Detecting subtule sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–214 (1993)

    Article  Google Scholar 

  13. Lawrence, C., Reilly, A.: An expectation maximization (em) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins: Structure, Function and Genetics 7, 41–51 (1990)

    Article  Google Scholar 

  14. Leung, H., Chin, F.: Finding Exact Optimal Motif in Matrix Representation by Partitioning. In: European Conference on Computational Biology ECCB (2005) (to appear)

    Google Scholar 

  15. Liang, S.: cWINNOWER Algorithm for Finding Fuzzy DNA Motifs. Computer Society Bioinformatics Conference 2, 260–265 (2003)

    Google Scholar 

  16. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification. Jour. Comp. Biol. 7(3-4), 345–362 (2000)

    Article  Google Scholar 

  17. Pesole, G., Prunella, N., Liuni, S., Attimonelli, M., Saccone, C.: Wordup: an efficient algorithm for discovering statistically significant patterns in dna sequences. Nucl. Acids. Res. 20(11), 2871–2875 (1992)

    Article  Google Scholar 

  18. Pevzner, P., Sze, S.H.: Combinatorial approaches to finding subtle signals in dna sequences. In: International Conference on Intelligent Systems for Molecular Biology vol. 8, pp. 269–278 (2000)

    Google Scholar 

  19. Sagot, M.F.: Spelling approximate repeated or common motifs using a suffix tree. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 111–127. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Sinha, S.: Discriminative motifs. Jour. Comp. Biol. 10, 599–616 (2003)

    Article  Google Scholar 

  21. Zhu, J., Zhang, M.: SCPD: a promoter database of the yeast Saccha-romyces cerevisiae. Bioinformatics 15, 563–577 (1999), http://cgsigma.cshl.org/jian/

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leung, H.C.M., Chin, F.Y.L. (2005). Generalized Planted (l,d)-Motif Problem with Negative Set. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_22

Download citation

  • DOI: https://doi.org/10.1007/11557067_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29008-7

  • Online ISBN: 978-3-540-31812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics