Skip to main content

A Faster Algorithm for Detecting Network Motifs

  • Conference paper
Algorithms in Bioinformatics (WABI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3692))

Included in the following conference series:

Abstract

Motifs in a network are small connected subnetworks that occur in significantly higher frequencies than in random networks. They have recently gathered much attention as a useful concept to uncover structural design principles of complex networks. Kashtan et al. [Bioinformatics, 2004] proposed a sampling algorithm for efficiently performing the computationally challenging task of detecting network motifs. However, among other drawbacks, this algorithm suffers from sampling bias and is only efficient when the motifs are small (3 or 4 nodes). Based on a detailed analysis of the previous algorithm, we present a new algorithm for network motif detection which overcomes these drawbacks. Experiments on a testbed of biological networks show our algorithm to be orders of magnitude faster than previous approaches. This allows for the detection of larger motifs in bigger networks than was previously possible, facilitating deeper insight into the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18), 3346–3352 (2004)

    Article  Google Scholar 

  2. Artzy-Randrup, Y., Fleishman, S.J., Ben-Tal, N., Stone, L.: Comment on network motifs: Simple building blocks of complex networks and superfamilies of designed and evolved networks. Science 305, 1007c (2004)

    Google Scholar 

  3. Bender, E.A.: The asymptotic number of non-negative matrices with given row and column sums. Disc. Appl. Math. 10, 217–223 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Comb. Theor. A 24, 296–307 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berg, J., Lässig, M.: Local graph alignment and motif search in biological networks. PNAS 101(41), 14689–14694 (2004)

    Article  Google Scholar 

  6. Duke, R.A., Lefmann, H., Rödl, V.: A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comp. 24(3), 598–620 (1995)

    Article  MATH  Google Scholar 

  7. Itzkovitz, S., Levitt, R., Kashtan, N., et al.: Coarse-graining and self-dissimilarity of complex networks. Phys. Rev. E 71(016127) (2005)

    Google Scholar 

  8. Itzkovitz, S., Milo, R., Kashtan, N., et al.: Subgraphs in random networks. Phys. Rev. E 68(26127) (2003)

    Google Scholar 

  9. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  10. Knuth, D.E.: Estimating the efficiency of backtrack programs. In: Selected papers on Analysis of Algorithms. Stanford Junior University, Palo Alto (2000)

    Google Scholar 

  11. Lee, T.I., Rinaldi, N.J., Robert, F., et al.: Transcriptional regulatory networks in Saccharomyces Cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  12. McKay, B.D.: Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)

    MathSciNet  Google Scholar 

  13. Milo, R., Itzkovitz, S., Kashtan, N., et al.: Response to comment on network motifs: Simple building blocks of complex networks and superfamilies of designed and evolved networks. Science 305, 1007d (2004)

    Google Scholar 

  14. Milo, R., Itzkovitz, S., Kashtan, N., et al.: Superfamilies of designed and evolved networks. Science 303(5663), 1538–1542 (2004)

    Article  Google Scholar 

  15. Milo, R., Shen-Orr, S.S., Itzkovitz, S., et al.: Network motifs: Simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  16. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(026118) (2001)

    Google Scholar 

  17. Ott, S., Hansen, A., Kim, S., Miyano, S.: Superiority of network motifs over optimal networks and an application to the revelation of gene network evolution. Bioinformatics 21(2), 227–238 (2005)

    Article  Google Scholar 

  18. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia Coli. Nature Gen. 31(1), 64–68 (2002)

    Article  Google Scholar 

  19. Vázquez, A., Dobrin, R., Sergi, D., et al.: The topological relationship between the large-scale attributes and local interaction patterns of complex networks. PNAS 101(52), 17940–17945 (2004)

    Article  Google Scholar 

  20. Vespignani, A.: Evolution thinks modular. Nature Gen 35(2), 118–119 (2003)

    Article  Google Scholar 

  21. Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wernicke, S. (2005). A Faster Algorithm for Detecting Network Motifs. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_14

Download citation

  • DOI: https://doi.org/10.1007/11557067_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29008-7

  • Online ISBN: 978-3-540-31812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics