Skip to main content

Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombination Event

  • Conference paper
Algorithms in Bioinformatics (WABI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3692))

Included in the following conference series:

Abstract

The haplotype inference (HI) problem is the problem of inferring 2n haplotype pairs from n observed genotype vectors. This is a key problem that arises in studying genetic variation in populations, for example in the ongoing HapMap project [5]. In order to have a hope of finding the haplotypes that actually generated the observed genotypes, we must use some (implicit or explicit) genetic model of the evolution of the underlying haplotypes. The Perfect Phylogeny Haplotyping (PPH) model was introduced in 2002 [9] to reflect the “neutral coalescent” or “perfect phylogeny” model of haplotype evolution. The PPH problem (which can be solved in polynomial time) is to determine whether there is an HI solution where the inferred haplotypes can be derived on a perfect phylogeny (tree).

Since the introduction of the PPH model, several extensions and modifications of the PPH model have been examined. The most important modification, to model biological reality better, is to allow a limited number of biological events that violate the perfect phylogeny model. This was accomplished implicitly in [7,12] with the inclusion of several heuristics into an algorithm for the PPH problem [8]. Those heuristics are invoked when the genotype data cannot be explained with haplotypes that fit the perfect phylogeny model. In this paper, we address the issue explicitly, by allowing one recombination or homoplasy event in the model of haplotype evolution. We formalize the problems and provide a polynomial time solution for one problem, using an additional, empirically-supported assumption. We present a related framework for the second problem which gives a practical algorithm. We believe the second problem can be solved in polynomial time.

Research partially supported by grant EIA-0220154 from the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Combin. 5, 1–13 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. J. Comput. Biol. 10, 323–340 (2003)

    Article  Google Scholar 

  3. Barzuza, T., Beckman, J.S., Shamir, R., Pe’er, I.: Computational problems in perfect phylogeny haplotyping: XOR genotypes and tag SNPs. In: Proc. of CPM, pp. 14–31 (2004)

    Google Scholar 

  4. Chung, R.H., Gusfield, D.: Empirical exploration of perfect phylogeny haplotyping and haplotypers. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 5–19. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. International HapMap Consortium. The HapMap project. Nature 426, 789–796 (2003)

    Google Scholar 

  6. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping problem. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 585–600. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Eskin, E., Halperin, E., Karp, R.: Large scale reconstruction of haplotypes from genotype data. In: Proc. of RECOMB, pp. 104–113 (2003)

    Google Scholar 

  8. Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure via perfect phylogeny. J. Bioinf. Comput. Biol. 1, 1–20 (2003)

    Article  Google Scholar 

  9. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions (Extended Abstract). In: Proc. of RECOMB, pp. 166–175 (2002)

    Google Scholar 

  10. Gusfield, D.: Optimal, efficient reconstruction of Root-Unknown phylogenetic networks with constrained recombination. J. Comput. Sys. Sci. 70, 381–398 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinf. Comput. Biol. 2(1), 173–213 (2004)

    Article  Google Scholar 

  12. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using Imperfect Phylogeny. Bioinformatics 20, 1842–1849 (2004)

    Article  Google Scholar 

  13. Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98, 185–200 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hudson, R.: Gene genealogies and the coalescent process. Oxford Survey of Evolutionary Biology 7, 1–44 (1990)

    Google Scholar 

  15. Hudson, R.: Generating samples under the Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002)

    Article  Google Scholar 

  16. Lin, S., Cutler, D.J., Zwick, M.E., Chakravarti, A.: Haplotype inference in random population samples. Am. J. Hum. Genet. 71, 1129–1137 (2002)

    Article  Google Scholar 

  17. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  18. Song, Y.S.: On the combinatorics of rooted binary phylogenetic trees. Ann. Combin. 7, 365–379 (2003)

    Article  MATH  Google Scholar 

  19. Song, Y.S., Hein, J.: Constructing minimal ancestral recombination graphs. J. Comput. Biol. 12, 147–169 (2005)

    Article  Google Scholar 

  20. Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001)

    Article  Google Scholar 

  21. Tavaré, S.: Calibrating the clock: Using stochastic processes to measure the rate of evolution. In: Lander, E., Waterman, M. (eds.) Calculating the Secrets of Life. National Academy Press, Washington (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Y.S., Wu, Y., Gusfield, D. (2005). Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombination Event. In: Casadio, R., Myers, G. (eds) Algorithms in Bioinformatics. WABI 2005. Lecture Notes in Computer Science(), vol 3692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557067_13

Download citation

  • DOI: https://doi.org/10.1007/11557067_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29008-7

  • Online ISBN: 978-3-540-31812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics