Skip to main content

On the Approximation of Computing Evolutionary Trees

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

Abstract

Given a set of leaf-labelled trees with identical leaf sets, the well-known MAST problem consists of finding a subtree homeomorphically included in all input trees and with the largest number of leaves. MAST and its variant called MCT are of particular interest in computational biology. This paper presents positive and negative results on the approximation of MAST, MCT and their complement versions, denoted CMAST and CMCT.

For CMAST and CMCT on rooted trees we give 3-approximation algorithms achieving significantly lower running times than those previously known. In particular, the algorithm for CMAST runs in linear time. The approximation threshold for CMAST, resp. CMCT, is shown to be the same whenever collections of rooted trees or of unrooted trees are considered. Moreover, hardness of approximation results are stated for CMAST, CMCT and MCT on small number of trees, and for MCT on unbounded number of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1–2), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithm. SIAM J. on Comput. 26(6), 1656–1669 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 205–219. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Berry, V., Nicolas, F.: Improved parametrized complexity of maximum agreement subtree and maximum compatible tree problems. IEEE Trans. on Comput. Biology and Bioinf. (to appear)

    Google Scholar 

  5. Bonizzoni, P., Della Vedova, G., Mauri, G.: Approximating the maximum isomorphic agreement subtree is hard. Int. J. of Found. of Comput. Sci. 11(4), 579–590 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryant, D.: Building trees, hunting for trees and comparing trees: theory and method in phylogenetic analysis. PhD thesis, University of Canterbury, Department of Mathemathics (1997)

    Google Scholar 

  7. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T.M., Thorup, M.: An O(n log n) algorithm for the Maximum Agreement SubTree problem for binary trees. SIAM J. on Comput. 30(5), 1385–1404 (2001)

    Article  MathSciNet  Google Scholar 

  8. Eastabrook, G.F., McMorris, F.R.: When is one estimate of evolutionary relationships a refinement of another? J. of Math. Biol. 10, 367–373 (1980)

    Article  Google Scholar 

  9. Engebretsen, L., Holmerin, J.: Towards optimal lower bounds for clique and chromatic number. Theor. Comput. Sci. 299(1–3), 537–584 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farach, M., Przytycka, T.M., Thorup, M.: On the agreement of many trees. Inf. Proces. Letters 55(6), 297–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganapathy, G., Warnow, T.J.: Approximating the complement of the maximum compatible subset of leaves of k trees. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 122–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Ganapathysaravanabavan, G., Warnow, T.J.: Finding a maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 156–163. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Gupta, A., Nishimura, N.: Finding largest subtrees and smallest supertrees. Algorithmica 21(2), 183–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halldòrsson, M.M.: Approximations of weighted independent set and hereditary subset problems. J. of Graph Algor. and Appl. 4(1) (2000)

    Google Scholar 

  15. Hamel, A.M., Steel, M.A.: Finding a maximum compatible tree is NP-hard for sequences and trees. Appl. Math. Letters 9(2), 55–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Håstad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182, 105–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Disc. Appl. Math. 71(1–3), 153–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 499–508. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM J. on Comput. 24(5), 1122–1139 (1995)

    Article  MATH  Google Scholar 

  20. Kao, M.-Y., Lam, T.W., Sung, W.-K., Ting, H.-F.: A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 438–449. Springer, Heidelberg (1999)

    Google Scholar 

  21. Kao, M.-Y., Lam, T.W., Sung, W.-K., Ting, H.-F.: An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. J. of Algor. 40(2), 212–233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Steel, M.A., Warnow, T.J.: Kaikoura tree theorems: Computing the maximum agreement subtree. Inf. Proces. Letters 48(2), 77–82 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, V., Guillemot, S., Nicolas, F., Paul, C. (2005). On the Approximation of Computing Evolutionary Trees. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_14

Download citation

  • DOI: https://doi.org/10.1007/11533719_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics