Skip to main content

Defining Target Product Profiles (TPPs) for Aptamer-Based Diagnostics

  • Chapter
  • First Online:
Aptamers in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 174))

Abstract

Defining target product profiles (TPPs) for aptamer-based diagnostics is crucial to the success or failure of aptamer businesses or products. A well-conceived TPP will place the aptamer in an assay for a target against which antibodies are ill-suited or have difficulty detecting the analyte, such as some highly related proteins or poorly immunogenic small molecule haptens. Strong TPPs can also take advantage of the unique nucleic acid nature of aptamers, to produce assays with longer shelf life or special chemical properties and ability to be modified versus protein-based antibodies. The following chapter reviews the essence of well-conceived TPPs especially with respect to aptamer targets for diagnostics and illustrates several examples of commercial aptamer diagnostic success.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington AD, Szostak JW (1990) © 1990 Nature Publishing Group. Lett Nat 346:818–822. https://doi.org/10.1016/0021-9797(80)90501-9

    Article  CAS  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: chemi-SELEX. Science 249:505–510. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  3. Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56(1):555–583. https://doi.org/10.1146/annurev.med.56.062904.144915

    Article  CAS  PubMed  Google Scholar 

  4. Gold L (2015) SELEX: how it happened and where it will go. J Mol Evol 81(5–6):140–143. https://doi.org/10.1007/s00239-015-9705-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaur H, Bruno JG, Kumar A, Sharma TK (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8(15):4016–4032. https://doi.org/10.7150/thno.25958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48(15):2672–2689. https://doi.org/10.1002/anie.200804643

    Article  CAS  Google Scholar 

  7. Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16(3):181–202. https://doi.org/10.1038/nrd.2016.199

    Article  CAS  PubMed  Google Scholar 

  8. Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20(4):6866–6887. https://doi.org/10.3390/molecules20046866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Investors – Aptamer Group (2019) https://www.aptamergroup.co.uk/find-out-more/investors/. Accessed 5 Feb

  10. Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK (2017) Aptamer-based point-of-care diagnostic platforms. Sens Actuators B 246:535–553. https://doi.org/10.1016/j.snb.2017.02.060

    Article  CAS  Google Scholar 

  11. Emerging Life Sciences Series (2011) Defining your target product profile: therapeutics. MaRS Entrepreneur Workbooks

    Google Scholar 

  12. Report Consensus Meeting (2017) Consensus meeting report

    Google Scholar 

  13. Tuberculosis (2019) https://www.who.int/news-room/fact-sheets/detail/tuberculosis. Accessed 5 Feb

  14. Boyle DS (2015) UNITAID tuberculosis diagnostics technology & market landscape 2nd-edition 2013

    Google Scholar 

  15. WHO (2013) Global Tuberculosis Report 2013

    Google Scholar 

  16. Weyer K, Mirzayev F, Migliori GB, Van Gemert W, D’Ambrosio L, Zignol M, Floyd K et al (2013) Rapid molecular TB diagnosis: evidence, policy making and global implementation of xpert MTB/RIF. Eur Respir J 42(1):252–271. https://doi.org/10.1183/09031936.00157212

    Article  PubMed  Google Scholar 

  17. Pai NP, Vadnais C, Denkinger C, Engel N, Pai M (2012) Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med 9(9):e1001306. https://doi.org/10.1371/journal.pmed.1001306

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lavania S, Das R, Dhiman A, Myneedu VP, Verma A, Singh N, Sharma TK, Tyagi JS (2018) Aptamer-based TB antigen tests for the rapid diagnosis of pulmonary tuberculosis: potential utility in screening for tuberculosis. ACS Infect Dis 4:1718–1726. https://doi.org/10.1021/acsinfecdis.8b00201

    Article  CAS  PubMed  Google Scholar 

  19. Kaur H, Bhagwat SR, Sharma TK, Kumar A (2018) Analytical techniques for characterization of biological molecules – proteins and aptamers/oligonucleotides. Bioanalysis 11:103–117. https://doi.org/10.4155/bio-2018-0225

    Article  CAS  PubMed  Google Scholar 

  20. Kaur H, Li JJ, Bay BH, Yung LYL (2013) Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PLoS One 8(1):e50964. https://doi.org/10.1371/journal.pone.0050964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaur H, Yung LYL (2012) Probing high affinity sequences of DNA aptamer against VEGF 165. PLoS One 7(2):19–26. https://doi.org/10.1371/journal.pone.0031196

    Article  CAS  Google Scholar 

  22. Sharma TK, Bruno JG, Cho WC (2016) The point behind translation of aptamers for point of care diagnostics. Aptamers Synth Antibodies 2(2):36–42

    Google Scholar 

  23. Huang H, Zhao G, Dou W (2018) Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay. Biosens Bioelectron 107:266–271. https://doi.org/10.1016/j.bios.2018.02.027

    Article  CAS  PubMed  Google Scholar 

  24. Kapasi AJ, Dittrich S, González IJ, Rodwell TC (2016) Host biomarkers for distinguishing bacterial from non-bacterial causes of acute febrile illness: a comprehensive review. PLoS One 11(8):1–29. https://doi.org/10.1371/journal.pone.0160278

    Article  CAS  Google Scholar 

  25. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263(5152):1425–1429. https://doi.org/10.1126/science.7510417

    Article  CAS  PubMed  Google Scholar 

  26. Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56(22):10456–10461. https://doi.org/10.1021/jf801957h

    Article  CAS  PubMed  Google Scholar 

  27. Bruno JG, Carrillo MP, Phillips T, Edge A (2011) Discrimination of recombinant from natural human growth hormone using DNA aptamers. J Biomol Tech 22(1):27–36

    PubMed  PubMed Central  Google Scholar 

  28. Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK (2018) Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front Mol Biosci 5:1–16. https://doi.org/10.3389/fmolb.2018.00041

    Article  CAS  Google Scholar 

  29. Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32(1):178–183. https://doi.org/10.2144/02321dd04

    Article  CAS  PubMed  Google Scholar 

  30. Bruno JG, Phillips T, Montez T (2015) Preliminary development of DNA aptamers to inhibit phospholipase A2 activity of bee and cobra venoms. J Bionanosci 9(4):270–275. https://doi.org/10.1166/jbns.2015.1301

    Article  CAS  Google Scholar 

  31. Bruno JG, Richarte AM, Carrillo MP, Edge A (2012) An aptamer beacon responsive to botulinum toxins. Biosens Bioelectron 31(1):240–243. https://doi.org/10.1016/j.bios.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  32. Zhao L, Huang Y, Dong Y, Han X, Wang S, Liang X (2018) Aptamers and aptasensors for highly specific recognition and sensitive detection of marine biotoxins: recent advances and perspectives. Toxins 10(11):E427. https://doi.org/10.3390/toxins10110427

    Article  CAS  PubMed  Google Scholar 

  33. Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19(3):427–435. https://doi.org/10.1007/s10895-008-0429-8

    Article  CAS  PubMed  Google Scholar 

  34. Bruno JG, Sivils JC (2017) Further characterization and independent validation of a DNA aptamer-quantum dot-based magnetic sandwich assay for Campylobacter. Folia Microbiol 62(6):485–490. https://doi.org/10.1007/s12223-017-0520-0

    Article  CAS  Google Scholar 

  35. Bruno JG (2017) Long shelf life of a lyophilized DNA aptamer beacon assay. J Fluoresc 27(2):439–441. https://doi.org/10.1007/s10895-016-2014-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, H., Chaterjee, B., Bruno, J.G., Sharma, T.K. (2019). Defining Target Product Profiles (TPPs) for Aptamer-Based Diagnostics. In: Urmann, K., Walter, JG. (eds) Aptamers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 174. Springer, Cham. https://doi.org/10.1007/10_2019_104

Download citation

Publish with us

Policies and ethics