Skip to main content

Relevance of Deep-Subsurface Microbiology for Underground Gas Storage and Geothermal Energy Production

  • Chapter
  • First Online:
Geobiotechnology II

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

16S rRNA:

Ribosomal RNA of a sedimentation rate of 16 Svedberg

AOM:

Anaerobic oxidation of methane

bbl:

Barrel (oil)

CARD-FISH:

Catalyzed reporter deposition-Fluorescence in situ hybridisation

CCS:

Carbon capture and storage

cDNA:

Complementary DNA

CLEAN:

CO2 large-scale enhanced gas recovery in the Altmark Natural Gas Field

CO2CRC:

Cooperative Research Centre for Greenhouse Gas Technologies

COE:

Cost of electricity

CO2-EGR:

EGR using CO2

CO2-EOR:

EOR using CO2

CO2MAN:

CO2-reservoir management

CO2SINK:

CO2 Storage by injection into a saline aquifer at Ketzin

DAPI:

4′,6-Diamidin-2-phenylindol

DGGE:

Denaturing gradient gel electrophoresis

DNA:

Deoxyribonucleic acid

DOC:

Dissolved organic carbon

dsrAB:

Dissimilatory (bi)sulfite reductase gene

EDTA:

Ethylenediaminetetraacetic acid

ECBM:

Enhanced coal bed mining

EGR:

Enhanced gas recovery

EOR:

Enhanced oil recovery

EPS:

Extracellular polymeric substances

FISH:

Fluorescence in situ hybridization

HFC:

Hydrofluorocarbons

IEAGHG:

International Energy Agency Greenhouse Gas

mcr :

Methyl coenzyme M reductase gene

MEOR:

Microbial enhanced oil recovery

MIC:

Microbially influenced corrosion

MPN:

Most probable number

mRNA:

Messenger RNA

OIP:

Oil in place

P :

Pressure

PAH:

Polycyclic aromatic hydrocarbons

PFC:

Perfluorocarbons

PCR:

Polymerase chain reaction

PDS:

Bottom-hole positive displacement sampler

PLFA:

Phospholipid-derived fatty acids

qPCR:

Quantitative polymerase chain reaction

RECOBIO:

Recycling of sequestrated CO2 by deep subsurface microbial-biogeochemical transformation, RECOBIO-1 and RECOBIO-2 are two successive projects

RNA:

Ribonucleic acid

RT-qPCR:

Reverse transcription-quantitative PCR

SAC:

Surface active compound

SC-CO2 :

Supercritical carbon dioxide

SIP:

Stable isotope probing

SSCP:

Single-strand conformation polymorphism

TOC:

Total organic carbon

T-RFLP:

Terminal restriction fragment length polymorphism

UGS:

Underground gas storage

V :

Volume

References

  1. Alawi M, Lerm S, Vetter A, Wolfgramm M, Seibt A, Würdemann H (2013) Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy. Grundwasser 16(2):105–112

    Google Scholar 

  2. Alfreider A, Krössbacher M, Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31(4):832–840

    Article  CAS  Google Scholar 

  3. Arens P, Tuschewitzki GJ, Wollmann M, Follner H, Jacobi H (1995) Indicators for microbiologically induced corrosion of copper pipes in a cold-water plumbing system. Zentralbl Hyg Umweltmed 196(5):444–454

    Google Scholar 

  4. Baker SJ, West JM, Metcalfe R, Noy DJ, Yoshida H, Aoki K (1998) A biogeochemical assessment of the Tono site, Japan. J Contam Hydrol 35(1–3):331–340

    Google Scholar 

  5. Baranenko VI, Kirov VS (1989) Solubility of hydrogen in water in a broad temperature and pressure range. Sov Atom Energy 66(1):30–34

    Google Scholar 

  6. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187

    Article  CAS  Google Scholar 

  7. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15(3):181–186

    Article  CAS  Google Scholar 

  8. Bennett PC, Rogers JR, Choi WJ, Hiebert FK (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18(1):3–19

    Article  CAS  Google Scholar 

  9. Bertani R (2007) World geothermal power generation in 2007. Presented at the European Geothermal Congress, Unterhaching, Germany, 30 May to 1 June 2007

    Google Scholar 

  10. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1(1):14–21

    Google Scholar 

  11. Bock M, Bosecker K, Kämpfer P, Dott W (1994) Isolation and characterization of heterotrophic, aerobic bacteria from oil storage caverns in northern Germany. Appl Microbiol Biotechnol 42(2–3):463–468

    Article  CAS  Google Scholar 

  12. Boone DR, Liu Y, Zhao Z-J, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45(3):441–448

    Article  CAS  Google Scholar 

  13. Boreham C, Underschultz J, Stalker L, Kirste D, Freifeld B, Jenkins C, Ennis-King J (2011) Monitoring of CO2 storage in a depleted natural gas reservoir: gas geochemistry from the CO2CRC Otway Project, Australia. Int J Greenh Gas Con 5(4):1039–1054

    Article  CAS  Google Scholar 

  14. Brielmann H, Lueders T, Schreglmann K, Ferraro F, Avramov M, Hammerl V, Blum P, Bayer P, Griebler C (2011) Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme. Grundwasser 16(2):77–91

    Article  Google Scholar 

  15. Bryant E (1997) Climate process and change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Buschbach TC, Bond DC (1974) Underground storage of natural gas in Illinois, 1973. Department of Registration and Education, Illinois State Geological Survey, Urbana

    Google Scholar 

  17. Colwell FS, D’Hondt S (2013) Nature and extent of the deep biosphere. Rev Mineral Geochem 75:547–574

    Article  CAS  Google Scholar 

  18. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28(3):193–202

    Article  CAS  Google Scholar 

  19. Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149(4):350–357

    Article  CAS  Google Scholar 

  20. Crozier TE, Yamamoto S (1974) Solubility of hydrogen in water, sea water, and sodium chloride solutions. J Chem Eng Data 19(3):242–244

    Article  CAS  Google Scholar 

  21. Davis JB, Updegraff DM (1954) Microbiology in the petroleum industry. Bacteriol Rev 18(4):215

    CAS  Google Scholar 

  22. de Angelis MA, Baross JA, Lilley MD (1991) Enhanced microbial methane oxidation in water from a deep-sea hydrothermal vent field at simulated in situ hydrostatic pressures. Limnol Oceanogr 36(3):565–570

    Article  Google Scholar 

  23. Decho AW (2010) Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol Eng 36(2):137–144

    Article  Google Scholar 

  24. Deusner C, Meyer V, Ferdelman TG (2010) High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioeng 105(3):524–533

    Article  CAS  Google Scholar 

  25. Dinh HT, Kuever J, Muszmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427(6977):829–832

    Article  CAS  Google Scholar 

  26. Ehinger S (2011) Microbial communities and microbial processes in a German gas reservoir and their relevance for CO2 storage. Dissertation, TU Bergakademie Freiberg, Freiberg

    Google Scholar 

  27. Ehinger S, Seifert J, Kassahun A, Schmalz L, Hoth N, Schlömann M (2009) Predominance of Methanolobus spp. and Methanoculleus spp. in the archaeal communities of saline gas field formation fluids. Geomicrobiol J 26(5):326–338

    Article  CAS  Google Scholar 

  28. Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14(7):1772–1787

    Article  CAS  Google Scholar 

  29. Evans DJ (2008) An appraisal of underground gas storage technologies and incidents, for the development of risk assessment methodology. Report by the British Geological Survey to the Health & Safety Executive (HSE), HSE Research Report Series, Number RR605

    Google Scholar 

  30. Fischer S, Zemke K, Liebscher A, Wandrey M (2011) Petrophysical and petrochemical effects of long-term CO2-exposure experiments on brine-saturated reservoir sandstone. Energy Procedia 4:4487–4494

    Article  CAS  Google Scholar 

  31. Florette M, Rückheim J, Voigtländer G, Wendel H (2007) Gaz de France’s current and future involvement in CCS projects—a commitment to sustainable development. Geotechnologien Sci Rep 9:73–81

    Google Scholar 

  32. Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66(2):543–548

    Article  CAS  Google Scholar 

  33. Gasda S, Bachu S, Celia M (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46(6–7):707–720

    Article  CAS  Google Scholar 

  34. Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92(2):263–282

    Google Scholar 

  35. Gniese C, Frerichs J, Krüger M, Hoth N, Kassahun A, Schlömann M (2011) The bacterial community in the natural gas reservoir Altmark (Germany) and the assessment of indigenous microorganisms. In: Biospektrum Sonderausgabe: Tagungsband zur VAAM-Jahrestagung 2011, Karlsruhe, Germany, 03–06 April 2011. Spektrum Akademischer Verlag, p 117

    Google Scholar 

  36. Graupner T, Kassahun A, Rammlmair D, Meima JA, Kock D, Furche M, Fiege A, Schippers A, Melcher F (2007) Formation of sequences of cemented layers and hardpans within sulfide-bearing mine tailings (mine district Freiberg, Germany). Appl Geochem 22(11):2486–2508

    Article  CAS  Google Scholar 

  37. Griebler C, Mindl B, Slezak D, Geiger-Kaiser M (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat Microb Ecol 28(2):117–129

    Article  Google Scholar 

  38. Gunter WD, Perkins EH, McCann TJ (1993) Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energ Convers Manage 34(9–11):941–948

    Article  CAS  Google Scholar 

  39. Hazen T, Jiménez L, López de Victoria G, Fliermans C (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microb Ecol 22(1):293–304

    Google Scholar 

  40. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344–352

    Article  CAS  Google Scholar 

  41. Hoth N, Kassahun A, Krüger M, Gniese C, Frerichs J, Muschalle T, Reich M, Schlömann M (2011) Gesamtabschlussbericht des Forschungsprojekts: Untersuchung der biogeochemischen Transformation von im tiefen Untergrund gespeichertem CO2, RECOBIO-2. Freiberg, Germany

    Google Scholar 

  42. Hoth N, Kassahun A, Seifert J, Krüger M, Bretschneider H, Gniese C, Frerichs J, Simon A, Simon E, Muschalle T (2009) Investigation of CO2 induced biogeochemical reactions and active microorganisms of two German gas fields. Presented at the EGU General Assembly Conference, Wien, Austria, 19–24 April 2009

    Google Scholar 

  43. International Energy Agency Greenhouse Gas (IEAGHG) (2013) http://www.ieaghg.org/. Accessed 07 June 2013

  44. IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  45. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  46. Ivanova AE, Borzenkov IA, Tarasov AL, Milekhina EI, Belyaev SS (2007) A microbiological study of an underground gas storage in the process of gas injection. Microbiology 76(4):453–460

    Article  CAS  Google Scholar 

  47. Jones DG, Lister TR, Smith DJ, West JM, Coombs P, Gadalia A, Brach M, Annunziatellis A, Lombardi S (2011) In Salah gas CO2 storage JIP: surface gas and biological monitoring. Energy Procedia 4:3566–3573

    Article  CAS  Google Scholar 

  48. Kharaka YK, Thordsen JJ, Hovorka SD, Seay Nance H, Cole DR, Phelps TJ, Knauss KG (2009) Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I Brine Pilot test, Texas, USA. Appl Geochem 24(6):1106–1112

    Google Scholar 

  49. Kinrade SD, Del Nin JW, Schach AS, Sloan TA, Wilson KL, Knight CTG (1999) Stable five- and six-coordinated silicate anions in aqueous solution. Science 285(5433):1542–1545

    Article  CAS  Google Scholar 

  50. Kleinitz W, Boehling E (2005) Underground gas storage in porous media-operating experience with bacteria on gas quality. Presented at the SPE Europec/EAGE Annual Conference, Madrid, Spain, 13–16 June 2005

    Google Scholar 

  51. Knauss KG, Johnson JW, Steefel CI (2005) Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chem Geol 217(3–4):339–350

    Article  CAS  Google Scholar 

  52. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63(1):311–334

    Article  CAS  Google Scholar 

  53. Köhler S, Zemke J, Becker W, Wiebach J, Liebscher A, Möller F, Bannach A (2013) Operational reservoir monitoring at the CO2 pilot storage site Ketzin, Germany. In: Hou MZ, Xie H, Were P (eds) Clean energy systems in the subsurface: production, storage and conversion. Springer Series in Geomechanics and geoengineering. Springer, Berlin-Heidelberg, pp 53–63

    Google Scholar 

  54. Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth-Sci Rev 58(3–4):367–395

    Article  CAS  Google Scholar 

  55. Krüger M, Treude T, Wolters H, Nauhaus K, Boetius A (2005) Microbial methane turnover in different marine habitats. Palaeogeogr Palaeoclimatol Palaeoecol 227(1–3):6–17

    Article  Google Scholar 

  56. Kühn M, Barth J, Baumann G, Becker V, Bock M, Buske S, Fritschen R, Giese R, Groß C, Henninges J, Houpt L, Kock D, Krüger M, Morozova D, Myrttinen A, Würdemann H (2013) Reservoir and cap rock monitoring. In: Kühn M, Münch U (eds) Clean. Advanced Technologies in Earth Sciences. Springer, Berlin-Heidelberg, pp 99–130

    Google Scholar 

  57. Lerm S, Alawi M, Miethling-Graff R, Seibt A, Wolfgramm M, Rauppack K, Würdemann H (2011) Mikrobiologisches Monitoring in zwei geothermisch genutzten Aquiferen des Norddeutschen Beckens. Z geol Wiss 39:195–212

    Google Scholar 

  58. Lerm S, Westphal A, Miethling-Graff R, Alawi M, Seibt A, Wolfgramm M, Würdemann H (2013) Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17(2):311–327

    Article  CAS  Google Scholar 

  59. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55(2):259–287

    CAS  Google Scholar 

  60. Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33(3):365–381

    Article  Google Scholar 

  61. Magot M, Ollivier B, Patel BC (2000) Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77(2):103–116

    Article  CAS  Google Scholar 

  62. Mahinpey N, Asghari K, Mirjafari P (2011) Biological sequestration of carbon dioxide in geological formations. Chem Eng Res Des 89(9):1873–1878

    Article  CAS  Google Scholar 

  63. May F, Brune S, Gerling P, Krull P (2003) Möglichkeiten zur untertägigen Speicherung von CO2 in Deutschland-eine Bestandsaufnahme. Geotechnik 26(3):162–172

    Google Scholar 

  64. Ménez B, Dupraz S, Gérard E, Guyot F, Rommevaux Jestin C, Libert M, Jullien M, Michel C, Delorme F, Battaglia-Brunet F (2007) Impact of the deep biosphere on CO2 storage performance. Geotechnologien Sci Rep 9:150–163

    Google Scholar 

  65. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491(7425):541–546

    Article  CAS  Google Scholar 

  66. Mitchell AC, Phillips AJ, Hamilton MA, Gerlach R, Hollis WK, Kaszuba JP, Cunningham AB (2008) Resilience of planktonic and biofilm cultures to supercritical CO2. J Supercrit Fluids 47(2):318–325

    Article  CAS  Google Scholar 

  67. Mitchell AC, Phillips AJ, Hiebert R, Gerlach R, Spangler LH, Cunningham AB (2009) Biofilm enhanced geologic sequestration of supercritical CO2. Int J Green Gas Con 3(1):90–99

    Article  CAS  Google Scholar 

  68. Morita RY (1999) Is H2 the universal energy source for long-term survival? Microb Ecol 38(4):307–320

    Article  CAS  Google Scholar 

  69. Morozova D, Alawi M, Shaheed M, Krüger M, Kock D, Würdemann H (2011) The influence of microbial activity on rock fluid interaction: baseline characterization of deep biosphere for enhanced gas recovery in the Altmark natural gas reservoir. Energy Procedia 4:4633–4640

    Article  CAS  Google Scholar 

  70. Morozova D, Wandrey M, Alawi M, Zimmer M, Vieth A, Zettlitzer M, Würdemann H (2010) Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. Int J Greenh Gas Con 4(6):981–989

    Article  CAS  Google Scholar 

  71. Morozova D, Zettlitzer M, Let D, Würdemann H (2011) Monitoring of the microbial community composition in deep subsurface saline aquifers during CO2 storage in Ketzin, Germany. Energy Procedia 4:4362–4370

    Google Scholar 

  72. Mu A, Billman-Jacobe H, Boreham C, Schacht U, Moreau JW (2011) How do deep saline aquifer microbial communities respond to supercritical CO2 injection? Presented at the AGU Fall Meeting, San Francisco, California, 5–9 December 2011

    Google Scholar 

  73. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Micro 6(6):441–454

    CAS  Google Scholar 

  74. Natural Gas (2013) www.naturalgas.org. Accessed 07 June 2013

  75. Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4(5):296–305

    Article  CAS  Google Scholar 

  76. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28(1):56–63

    Article  CAS  Google Scholar 

  77. Palandri JL, Kharaka YK (2005) Ferric iron-bearing sediments as a mineral trap for CO2 sequestration: iron reduction using sulfur-bearing waste gas. Chem Geol 217(3–4):351–364

    Article  CAS  Google Scholar 

  78. Palandri JL, Rosenbauer RJ, Kharaka YK (2005) Ferric iron in sediments as a novel CO2 mineral trap: CO2–SO2 reaction with hematite. Appl Geochem 20(11):2038–2048

    Article  CAS  Google Scholar 

  79. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33(3):183–209

    Article  CAS  Google Scholar 

  80. Raczkowski J, Turkiewicz A, Kapusta P (2004) Elimination of biogenic hydrogen sulfide in underground gas storage: a case study. Presented at the SPE Annual Technical Conference and Exhibition Houston, Texas, 26–29 September 2004

    Google Scholar 

  81. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32(1):109–134

    Article  CAS  Google Scholar 

  82. Reith F (2011) Life in the deep subsurface. Geology 39(3):287–288

    Article  Google Scholar 

  83. Rogers JR, Bennett PC (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203(1–2):91–108

    Article  CAS  Google Scholar 

  84. Sand W (2003) Microbial life in geothermal waters. Geothermics 32(4–6):655–667

    Article  CAS  Google Scholar 

  85. Scherf A-K, Zetzl C, Smirnova I, Zettlitzer M, Vieth-Hillebrand A (2011) Mobilisation of organic compounds from reservoir rocks through the injection of CO2—comparison of baseline characterization and laboratory experiments. Energy Procedia 4:4524–4531

    Article  CAS  Google Scholar 

  86. Schippers A, Reichling J (2006) Laboruntersuchungen zum Einfluss von Temperaturveränderungen auf die Mikrobiologie des Untergrundes. Grundwasser 11(1):40–45

    Article  CAS  Google Scholar 

  87. Scholes CA, Kentish SE, Stevens GW (2009) Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Sepa Purif Rev 38(1):1–44

    Article  CAS  Google Scholar 

  88. Šmigáň P, Greksák M, Kozánková J, Buzek F, Onderka V, Wolf I (1990) Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiol Lett 73(3):221–224

    Article  Google Scholar 

  89. Stevens T (1997) Lithoautotrophy in the subsurface. FEMS Microbiol Rev 20(3–4):327–337

    Article  CAS  Google Scholar 

  90. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152(2):279–285

    Article  CAS  Google Scholar 

  91. The European Wind Energy Association (EWEA) (2013) Wind in power. 2012 European statistics

    Google Scholar 

  92. The World Wind Engery Association (WWEA) (2012) 2012—Half-year report

    Google Scholar 

  93. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8(3):169–180

    Google Scholar 

  94. von Bremen L (2009) Storage and transport capacities in Europe for a full renewable power supply system. Presented at the European Wind Energy Conference, Marseille, France, 16–19 March 2009

    Google Scholar 

  95. Vreeland RH, Piselli AF Jr, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2(3):321–331

    Article  CAS  Google Scholar 

  96. Wandrey M, Fischer S, Zemke K, Liebscher A, Scherf A-K, Vieth-Hillebrand A, Zettlitzer M, Würdemann H (2010) Monitoring petrophysical, mineralogical, geochemical and microbiological effects of CO2 exposure—Results of long-term experiments under in situ conditions. Energy Procedia 4:3644–3650

    Article  Google Scholar 

  97. Wandrey M, Pellizari L, Zettlitzer M, Würdemann H (2011) Microbial community and inorganic fluid analysis during CO2 storage within the frame of CO2SINK—Long-term experiments under in situ conditions. Energy Procedia 4:3651–3657

    Article  CAS  Google Scholar 

  98. Wenzhöfer F, Asendorf V, Grünke S, Hagemann J, Hoge U, Hovland M, Lehmenhecker S, Shurn K, Weiz E, Wulff T (2012) Impact of potential CO2 leakage on marine ecosystems—-RV Heincke cruise report HE 377, 16–24 April, Bremerhaven, Germany

    Google Scholar 

  99. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7(3):301–306

    Article  CAS  Google Scholar 

  100. Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411(6841):1034–1037

    Article  CAS  Google Scholar 

  101. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21(1):78–80

    Article  CAS  Google Scholar 

  102. Zettlitzer M, Moeller F, Morozova D, Lokay P, Würdemann H (2010) Re-establishment of the proper injectivity of the CO2-injection well Ktzi 201 in Ketzin, Germany. Int J Greenh Gas Con 4(6):952–959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Krüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gniese, C. et al. (2013). Relevance of Deep-Subsurface Microbiology for Underground Gas Storage and Geothermal Energy Production. In: Schippers, A., Glombitza, F., Sand, W. (eds) Geobiotechnology II. Advances in Biochemical Engineering/Biotechnology, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_257

Download citation

Publish with us

Policies and ethics