Skip to main content

Measuring the Mechanical Properties of Single Microbial Cells

  • Chapter
  • First Online:
High Resolution Microbial Single Cell Analytics

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 124))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

ESEM:

Environmental scanning electron microscope

FEA:

Finite element analysis

RT-PCR:

Reverse transcription polymerase chain reaction

TEM:

Transmission electron microscope

References

  1. Ahmad MR, Nakajima M, Kojima S et al (2008a) In situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental SEM. IEEE T Nanotechnol 7:607–616

    Article  Google Scholar 

  2. Ahmad MR, Nakajima M, Kojima S et al (2008b) The effects of cell sizes environmental conditions and growth phases on the strength of individual W303 yeast cells inside ESEM. IEEE T Nanobiosci 7:185–193

    Article  Google Scholar 

  3. Arfsten J, Leupold S, Bradtmöller C et al (2010) Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae. Colloid Surf B 79:284–290

    Article  CAS  Google Scholar 

  4. Berner JL, Gervais P (1994) A new visualization chamber to study the transient volumetric response of yeast-cells submitted to osmotic shifts. Biotechnol Bioeng 43:165–170

    Article  CAS  Google Scholar 

  5. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  6. Blewett J, Burrows K, Thomas C (2000) A micromanipulation method to measure the mechanical properties of single tomato suspension cells. Biotechnol Lett 22:1877–1883

    Article  CAS  Google Scholar 

  7. Chan G, Booth AJ, Mannweiler K, Hoare M (2006) Ultra scale-down studies of the effect of flow and impact conditions during E coli cell processing. Biotechnol Bioeng 95:671–683

    Article  CAS  Google Scholar 

  8. de Groot PWJ, Ruiz C, de Aldana CRV et al (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genome 2:124–142

    Article  Google Scholar 

  9. de Maranon IM, Gervais P, Molin P (1997) Determination of cells’ water membrane permeability: unexpected high osmotic permeability of Saccharomyces cerevisiae. Biotechnol Bioeng 56:62–70

    Article  Google Scholar 

  10. Donsi F, Ferrari G, Lenza E, Maresca P (2009) Main factors regulating microbial inactivation by high-pressure homogenization: operating parameters and scale of operation. Chem Eng Sci 64:520–532

    Article  CAS  Google Scholar 

  11. Feng WW, Yang WH (1973) Contact problem of an inflated spherical nonlinear membrane. J Appl Mech 40:209–214

    Article  Google Scholar 

  12. Gaboriaud F, Dufrene YF (2007) Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloid Surf B 54:10–19

    Article  CAS  Google Scholar 

  13. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816

    Article  CAS  Google Scholar 

  14. Harold FM (2007) Bacterial morphogenesis: learning how cells make cells. Curr Opin Microbiol 10:591–595

    Article  CAS  Google Scholar 

  15. Kleinig AR, Middelberg APJ (1998) On the mechanism of microbial cell disruption in high-pressure homogenization. Chem Eng Sci 53:891–898

    Article  CAS  Google Scholar 

  16. Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202

    Article  CAS  Google Scholar 

  17. Lardner TJ, Pujara P (1980) Compression of spherical cells. Mech Today 5:161–176

    Google Scholar 

  18. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol R 70:317–343

    Article  CAS  Google Scholar 

  19. Lim CT, Zhou EH, Li A et al (2006) Experimental techniques for single cell and single molecule biomechanics. Mat Sci Eng C Biomim 26:1278–1288

    Article  CAS  Google Scholar 

  20. Mashmoushy H, Zhang Z, Thomas CR (1998) Micromanipulation measurement of the mechanical properties of baker’s yeast cells. Biotechnol Tech 12:925–929

    Article  CAS  Google Scholar 

  21. Meikle AJ, Reed RH, Gadd GM (1988) Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. J Gen Microbiol 134:3049–3060

    CAS  Google Scholar 

  22. Moore EK, Hoare M, Dunnill P (1990) Disruption of baker’s yeast in a high-pressure homogenizer—new evidence on mechanism. Enz Microb Technol 12:764–770

    Article  Google Scholar 

  23. Nadler B (2010) On the contact of a spherical membrane enclosing a fluid with rigid parallel planes. Int J NonLinear Mech 45:294–300

    Article  Google Scholar 

  24. Peeters EAG, Bouten CVC, Oomens CWJ, Baaijens FPT (2003) Monitoring the biomechanical response of individual cells under compression: a new compression device. Med Biol Eng Comput 41:498–503

    Article  CAS  Google Scholar 

  25. Pelling AE, Sehati S, Gralla EB et al (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150

    Article  CAS  Google Scholar 

  26. Ren YL, Donald AM, Zhang ZB (2008) Investigation of the morphology, viability and mechanical properties of yeast cells in Environmental SEM. Scanning 30:435–442

    Article  Google Scholar 

  27. Sakai Y, Azuma M, Takada Y et al (2007) Saccharomyces cerevisiae mutant displaying beta-glucans on cell surface. J Biosci Bioeng 103:161–166

    Article  CAS  Google Scholar 

  28. Shiu C, Zhang Z, Thomas CR (1999) A novel technique for the study of bacterial cell mechanical properties. Biotechnol Tech 13:707–713

    Article  CAS  Google Scholar 

  29. Smith AE, Moxham KE, Middelberg APJ (1998) On uniquely determining cell-wall material properties with the compression experiment. Chem Eng Sci 53:3913–3922

    Article  CAS  Google Scholar 

  30. Smith AE, Zhang Z, Thomas CR (2000a) Wall material properties of yeast cells: part 1. Cell measurements and compression experiments. Chem Eng Sci 55:2031–2041

    Article  CAS  Google Scholar 

  31. Smith AE, Zhang ZB, Thomas CR et al (2000b) The mechanical properties of Saccharomyces cerevisiae. PNAS 97:9871–9874

    Article  CAS  Google Scholar 

  32. Stenson JD (2008) Investigating the mechanical properties of yeast cells. PhD Thesis University of Birmingham, UK

    Google Scholar 

  33. Stenson JD, Ren Y, Donald AM, Zhang Z (2010) Compression testing by nanomanipulation in environmental scanning electron microscope. Exp Tech 34:60–62

    Article  Google Scholar 

  34. Stenson JD, Thomas CR, Hartley P (2009) Modelling the mechanical properties of yeast cells. Chem Eng Sci 64:1892–1903

    Article  CAS  Google Scholar 

  35. Thomas CR, Zhang Z (1998) The effect of hydrodynamics on biological materials. In: Galindo E, Ramirez OT (eds) Advances in bioprocess engineering II:137–170. Kluwer, London

    Google Scholar 

  36. Tomos D (2000) The plant cell pressure probe. Biotechnol Lett 22:437–442

    Article  CAS  Google Scholar 

  37. Touhami A, Nysten B, Dufrene YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543

    Article  CAS  Google Scholar 

  38. Wang C, Cowen C, Zhang Z, Thomas CR (2005) High-speed compression of single alginate microspheres. Chem Eng Sci 60:6649–6657

    Article  CAS  Google Scholar 

  39. Wang CX, Pritchard J, Thomas CR (2006) Investigation of the mechanics of single tomato fruit cells. J Texture Stud 37:597–606

    Article  Google Scholar 

  40. Wang CX, Wang L, Thomas CR (2004) Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Bot Lond 93:443–453

    Article  CAS  Google Scholar 

  41. Wang QG, Magnay JL, Nguyen B et al (2009) Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Biochem Biophl Res Commun 379:738–742

    Article  CAS  Google Scholar 

  42. Zhang Z, Stenson JD, Thomas CR (2009) Micromanipulation in mechanical characterisation of single particles. In: Li J (ed) Advances in chemical engineering. Elsevier, Amsterdam, 37:29–85

    Google Scholar 

  43. Zhang Z, Al-Rubeai M, Thomas CR (1993) Estimation of disruption of animal cells by turbulent capillary flow. Biotechnol Bioeng 42:987–993

    Article  Google Scholar 

  44. Zhang Z, Ferenczi MA, Lush AC, Thomas CR (1991) A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Appl Microbiol Biot 36:208–210

    Article  CAS  Google Scholar 

  45. Zhang Z, Ferenczi MA, Thomas CR (1992) A micromanipulation technique with a theoretical cell model for determining mechanical properties of single mammalian cells. Chem Eng Sci 47:1347–1354

    Article  Google Scholar 

  46. Zhao L, Schaefer D, Xu H et al (2005) Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy. Biotechnol Prog 21:292–299

    Article  Google Scholar 

  47. Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces cerevisiae mannoproteins form an external cell-wall layer that determines wall porosity. J Bacteriol 159:1018–1026

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the work of many colleagues, particularly Mr. C. Cowen of Micro Instruments (Oxford) Ltd. for equipment development and Professor A. Middelberg, Dr. A.E. Smith and Dr. P. Hartley for developments in modelling. Dr. C. Shiu is thanked for the photograph in Fig. 7. The authors also acknowledge the financial support of the Engineering and Physical Sciences Research Council, the Biotechnology and Biological Sciences Research Council and others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin R. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas, C.R., Stenson, J.D., Zhang, Z. (2010). Measuring the Mechanical Properties of Single Microbial Cells. In: Müller, S., Bley, T. (eds) High Resolution Microbial Single Cell Analytics. Advances in Biochemical Engineering / Biotechnology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_84

Download citation

Publish with us

Policies and ethics