Skip to main content

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 5))

Abstract

In this paper, as part of an argument for the of revolutions in mathematics, I argue that there in incommensurability in Mathematics. After Devising A Framework Sensitive To Meaning Change And To Changes In The Extension Of Mathematical Predicates, I Consider Two Case Studies That Illustrate Different Ways In Which Incommensurability Emerge In Mathematical Practice. The Most Detailed Case Involves Nonstandard Analysis, And The Existence Of Different Notions Of The Continuum. But I Also Examine How Incommensurability Found Its Way Into Set Theory. I Conclude By Examining Some Consequences That Incommensurability Has To Mathematical Practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azzouni, J. [1994]: Metaphysical Myths, Mathematical Practice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Azzouni, J. [1997]: “Thick Epistemic Access: Distinguishing the Mathematical from the Empirical”, Journal of Philosophy 94, pp. 472-484.

    Article  Google Scholar 

  • Balaguer, M. [1998]: Platonism and Anti-Platonism in Mathematics. New York: Oxford University Press.

    Google Scholar 

  • Bell, J.L., and Machover, M. [1977]: A Course in Mathematical Logic. Amsterdam: North-Holland.

    Google Scholar 

  • Berkeley, G. [1734]: “The Analyst”, in Berkeley [1951], vol.4., pp. 65-102.

    Google Scholar 

  • Berkeley, G. [1951]: The Works of George Berkeley Bishop of Cloyne. (Edited by A.A. Luce and T.E. Jessop.) London: Thomas Nelson and Sons.

    Google Scholar 

  • Bernstein, A., and Robinson, A. [1966]: “Solution of an Invariant Subspace Problem of K.T. Smith and P.R. Halmos”, Pacific Journal of Mathematics 16, pp. 421-431. (Reprinted in Robinson [1979b], pp. 88-98.)

    Article  Google Scholar 

  • Bueno, O. [2000]: “Empiricism, Mathematical Change and Scientific Change”, Studies in History and Philosophy of Science 31, pp. 269-296.

    Article  Google Scholar 

  • Bueno, O. [2002]: “Mathematical Change and Inconsistency: A Partial Structures Approach”, in Meheus (ed.) [2002], pp. 59-79.

    Google Scholar 

  • Cantor, G. [1883]: “Über unendliche, lineare punktmannigfaltigkeiten. V”, Mathematische Annalen 21, pp. 545-591.

    Article  Google Scholar 

  • Dauben, J.W. [1995]: Abraham Robinson: The Creation of Nonstandard Analysis, a Personal and Mathematical Odyssey. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Gillies, D. (ed.) [1992]: Revolutions in Mathematics. Oxford: Clarendon Press.

    Google Scholar 

  • Hallett, M. [1984]: Cantorian Set Theory and Limitation of Size. Oxford: Clarendon Press.

    Google Scholar 

  • Halmos, P. [1966]: “Invariant Subspaces of Polynomially Compact Operators”, Pacific Journal of Mathematics 16, pp. 433-437.

    Article  Google Scholar 

  • Halmos, P. [1985]: I Want to Be a Mathematician. An Automathography. New York: Springer-Verlag.

    Book  Google Scholar 

  • Henson, C.W., and Keisler, H.J. [1986]: “On the Strength of Nonstandard Analysis”, Journal of Symbolic Logic 51, pp. 377-386.

    Article  Google Scholar 

  • Kanamori, A. [1996]: “The Mathematical Development of Set Theory From Cantor to Cohen”, Bulletin of Symbolic Logic 2, pp. 1-71.

    Article  Google Scholar 

  • Kanamori, A. [1997]: “The Mathematical Import of Zermelo’s Well-Ordering Theorem”, Bulletin of Symbolic Logic 3, pp. 281-311.

    Article  Google Scholar 

  • Kuhn, T. [1962]: The Structure of Scientific Revolutions. Chicago: University of Chicago Press. (A second edition was published in 1970.)

    Google Scholar 

  • Lakatos, I. (ed.) [1967]: Problems in the Philosophy of Mathematics. Amsterdam: North-Holland.

    Google Scholar 

  • Lakatos, I. [1976]: Proofs and Refutations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lakatos, I. [1978a]: “Cauchy and the Continuum: The Significance of Non-Standard Analysis for the History and Philosophy of Mathematics”, in Lakatos [1978c], pp. 43-60.

    Google Scholar 

  • Lakatos, I. [1978b]: “What Does a Mathematical Proof Prove?”, in Lakatos [1978c], pp. 61-69.

    Google Scholar 

  • Lakatos, I. [1978c]: Mathematics, Science and Epistemology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lavine, S. [1994]: Understanding the Infinite. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Leibniz, G.W. [1701]: “Mémoire de M.G.G. Leibniz touchant son sentiment sur le calcul différentiel. Journal de Trévoux”, in Leibniz [1858], p. 350.

    Google Scholar 

  • Leibniz, G.W. [1716]: “Letter to Dangicourt, sur les monades et le calcul infinitésimal etc. (September 11)”, in Leibniz [1789], vol. 3, pp. 499-502.

    Google Scholar 

  • Leibniz, G.W. [1789]: Opera Omnia. (Edited by L. Dutens.) Geneva.

    Google Scholar 

  • Leibniz, G.W. [1858]: Mathematische Schriften. (Volume 6 of Die Philosophischen Scriften von G.W. Leibniz, edited by C.I. Gerhardt.) Berlin.

    Google Scholar 

  • Luxemburg, W.A.J. [1962]: Nonstandard Analysis. Lectures on A. Robinson’s Theory of Infinitesimals and Infinitely Large Numbers. Pasadena: Mathematics Department, California Institute of Technology. (Second corrected edition, 1964.)

    Google Scholar 

  • Machover, M. [1967]: “Non-Standard Analysis without Tears: An Easy Introduction to A. Robinson’s Theory of Infinitesimals”, Technical Report no. 27, Office of Naval Research, Information Systems Branch. Jerusalem: The Hebrew University of Jerusalem.

    Google Scholar 

  • Meheus, J. (ed.) [2002]: Inconsistency in Science. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Moore, G.H. [1982]: Zermelo’s Axiom of Choice: Its Origins, Development, and Influence. New York: Springer-Verlag.

    Book  Google Scholar 

  • Resnik, M. [1997]: Mathematics as a Science of Patterns. Oxford: Clarendon Press.

    Google Scholar 

  • Robinson, A. [1967]: “The Metaphysics of the Calculus”, in Lakatos (ed.) [1967], pp. 27-46. (Reprinted in Robinson [1979b], pp. 537-555.)

    Google Scholar 

  • Robinson, A. [1974]: Non-Standard Analysis. (First edition, 1966.) Amsterdam: North-Holland. (Reprinted edition Princeton, NJ: Princeton University Press, 1996.)

    Google Scholar 

  • Robinson, A. [1979a]: Selected Papers of Abraham Robinson. Volume 1: Model Theory and Algebra. (Edited by H.J. Keisler, S. Körner, W.A.J. Luxemburg and A.D. Young.) New Haven: Yale University Press.

    Google Scholar 

  • Robinson, A. [1979b]: Selected Papers of Abraham Robinson. Volume 2: Nonstandard Analysis and Philosophy. (Edited by H.J. Keisler, S. Körner, W.A.J. Luxemburg and A.D. Young.) New Haven: Yale University Press.

    Google Scholar 

  • Shapiro, S. [1991]: Foundations Without Foundationalism: A Case for Second-order Logic. Oxford: Clarendon Press.

    Google Scholar 

  • van Fraassen, B.C. [1980]: The Scientific Image. Oxford: Clarendon Press.

    Book  Google Scholar 

  • van Heijenoort, J. (ed.) [1967]: From Frege to Gödel. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Zermelo, E. [1904]: “Beweis, dass jede Menge wohlgeordnet werden kann (Aus einem an Herrn Hilbert gerichteten Briefe)”, Mathematische Annalen 59, pp. 514-516. (English translation in van Heijenoort (ed.) [1967], pp. 139-141.)

    Article  Google Scholar 

  • Zermelo, E. [1908a]: “Neuer Beweis für die Möglichkeit einer Wohlordnung”, Mathematische Annalen 65, pp. 107-128. (English translation in van Heijenoort (ed.) [1967], pp. 183-198.)

    Article  Google Scholar 

  • Zermelo, E. [1908b]: “Untersuchungen über die Grundlagen der Mengenlehre. I”, Mathematische Annalen 65, pp. 261-281. (English translation in van Heijenoort (ed.) [1967], pp. 199-215.)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bueno, O. (2007). Incommensurability In Mathematics. In: van Kerkhove, B., van Bendegem, J.P. (eds) Perspectives On Mathematical Practices. Logic, Epistemology, and the Unity of Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5034-8_5

Download citation

Publish with us

Policies and ethics