Skip to main content

Application of stable isotope tracers to studies of zooplankton feeding, using the rotifer Brachionus calyciflorus as an example

  • Chapter
Rotifera X

Part of the book series: Developments in Hydrobiology ((DIHY,volume 181))

Abstract

We present a protocol and calculation methods for the determination of zooplankton ingestion and assimilation rates with stable isotope tracers. These methods have been developed from experiments with the rotifer Brachionus calyciflorus that had been fed 13C-labelled Scenedesmus obliquus. Stable isotope tracers offer the same advantages as radioisotopes. These include the possibility for direct and accurate quantification of ingestion and assimilation rates, short sample analysis times and low animal densities requirements. However, the use of stable isotope tracers requires relatively long sample preparation times and specialist equipment and is, thus, relatively costly for most laboratories. The application of stable isotope tracers in zooplankton feeding studies offers several advantages in comparison with radioisotopes. Firstly, they do not emit harmful radiation and can therefore be applied safely both in the laboratory and in the field. Secondly, the samples can be dried for safe storage and easy transportation. Thirdly, no aggressive chemicals are required for sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baars, M. A. & S. S. Oosterhuis, 1985. Zooplankton grazing in natural water with high concentration of 14C bicarbonate: variable controls and gut passage time. Hydrobiological Bulletin 19: 71–80.

    Article  Google Scholar 

  • Bearhop, S., D. R. Thompson, S. Waldron, I. S. Russell, G. Alexander & R. W. Furness, 1999. Stable isotopes indicate the extent of freshwater feeding by cormorants Phalacrocorax carbo shot at inland fisheries in England. Journal of Applied Ecology 36: 75–84.

    Article  Google Scholar 

  • Berthold, H. K., D. L. Hachey, P. J. Reeds, O. P Thomas & S. P. D. Hoeksema Klein, 1991. Uniformly 13C-labeled algal protein used to determine amino acid essentiality in vivo. Proceedings of the National Academy of Sciences (USA) 88:8091–8095.

    CAS  Google Scholar 

  • Boschker, H. T. S. & J. Middelburg, 2002. Minireview: Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology 40: 85–95.

    CAS  Google Scholar 

  • Brett, M. T., 1993. Comment on “Possibility of N or P limitation for planktonic cladocerans: and experimental test” (Urabe and Watanabe) and “Nutrient limitation of zooplankton production.” (Hessen). Limnology and Oceanography 38: 1333–1337.

    CAS  Google Scholar 

  • Carman, K. R. & B. Fry, 2002. Small-sample methods for delta C-13 and delta N-15 analysis of the diets of marsh meiofaunal species using natural-abundance and tracer-addition isotope techniques. Marine Ecology Progress Series 240: 85–92.

    CAS  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1978. Influence of the diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.

    Article  CAS  Google Scholar 

  • Gophen, M., B. Z. Cavari & T. Berman, 1973. Zooplankton feeding on differentially labelled algae and bacteria. Nature 247: 393–394.

    Google Scholar 

  • Guillard, 1975. Cultures of phytoplankton for feeding of marine invertebrates. In Smith, (ed.) Culture of Marine Invertebrate Animals. Plenum, New York, 29–60.

    Google Scholar 

  • Gulati, R. D., 1985. Zooplankton grazing methods using radioactive tracers: technical problems. Hydrobiological Bulletin 19: 61–69.

    Article  Google Scholar 

  • Hammer, A., C. Grüttner & R. Schumann, 2001. New biocompatible tracer particles: use for estimation of microzooplankton grazing, digestion, and growth rates. Aquatic Microbial Ecology 24: 153–161.

    Google Scholar 

  • Hasegawa, T., I. Koike & H. Mukai, 2001. Fate of food nitrogen in marine copepods. Marine Ecology Progress Series 210: 167–174.

    CAS  Google Scholar 

  • Hessen, D. O., 1992. Nutrient element limitation of zooplankton production. The American Naturalist 140: 799–814.

    Google Scholar 

  • Hessen, D. O., 1993. The role of mineral nutrients for zooplankton nutrition: Reply to the comment by Brett. Limnology and Oceanography 38: 1340–1343.

    Google Scholar 

  • Hino, A., S. Aoki & M. Ushiro, 1997. Nitrogen-flow in the rotifer Brachionus rotundiformis and its significance in mass cultures. Hydrobiologia 358: 77–82.

    Article  CAS  Google Scholar 

  • Lampert, W., 1974. A method for determining food selection by zooplankton. Limnology and Oceanography 19: 995–998.

    Google Scholar 

  • Lampert, W., 1977a. Studies on the carbon balance of Daphnia pulex as related to environmental conditions. I. Methodological problems of the use of 14C for the measurement of carbon assimilation. Archiv für Hydrobiologie 48: 287–309.

    CAS  Google Scholar 

  • Lampert, W., 1977b. Studies on the carbon balance of Daphnia pulex as related to environmental conditions II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Archiv für Hydrobiologie 48: 310–335.

    CAS  Google Scholar 

  • Lampert, W. & W. Gabriel, 1984. Tracer kinetics in Daphnia: an improved two-compartment model and experimental test. Archiv für Hydrobiologie 100: 1–20.

    Google Scholar 

  • Lampert, W. & J. Grey, 2003. Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study. Hydrobiologia 500: 95–101.

    Article  Google Scholar 

  • Lampert, W. & B. E. Taylor, 1985. Zooplankton grazing in a eutrophic lake: implications of diel vertical migration. Ecology 66: 68–82.

    Google Scholar 

  • Lindemann, N. & W. Kleinow, 2000. A study of rotifer feeding and digestive processes using erythrocytes as microparticulate markers. Hydrobiologia 435: 27–41.

    Article  Google Scholar 

  • Lürling, M. & A. M. Verschoor, 2003. F0-spectra of chlorophyll fluorescence for the determination of zooplankton grazing. Hydrobiologia 491: 145–157.

    Article  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett & A. M. Liston, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77.

    Article  PubMed  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita & C. R. Goldman, 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.

    Article  PubMed  Google Scholar 

  • Penry, D. L. & B. W. Frost, 1990. Re-evaluation of the gutfullness (gut fluorescence) method for inferring ingestion rates of suspension-feeding copepods. Limnology and Oceanography 35: 1207–1214.

    Google Scholar 

  • Peters, R. H, 1984. Methods for the study of feeding, grazing and assimilation by zooplankton. In Downing, J. A. & F. H. Rigler (eds) A manual for the assessment of secondary production in fresh waters. IBP Handbook 17 (2nd edn., pp. 336–412). Blackwell, Oxford, 336–412.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Reviews of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Pilati, A. & W. A. Wurtsbaugh, 2003. Importance of zooplankton for the persistence of a deep chlorophyll layer: A Limnocorral experiment. Limnology and Oceanography 48: 249–260.

    Google Scholar 

  • Rigler, F. H., 1971. Methods for the measurement of assimilation of food by zooplankton. In Edmondson, W. T. (ed.) A manual on methods for the assessment of secondary production. IBP Handbook No. 17. Blackwell Scientific Publications, Oxford/Edinburgh, 264–269.

    Google Scholar 

  • Rothhaupt, K. O., 1990. Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnology and Oceanography 35: 24–32.

    Google Scholar 

  • Starkweather, P. L. & J. J. Gilbert, 1977a. Radiotracer determination of feeding in Brachionus calyciflorus: The importance of gut passage times. Archiv für Hydrobiologie, Ergebnisse der Limnologie 8: 261–263.

    Google Scholar 

  • Starkweather, P. L. & J. J. Gilbert, 1977b. Feeding in the rotifer Brachionus calyciflorus 2. Effect of food density on feeding rates using Euglena gracilis and Rhodotorula glutinis. Oecologia 28: 133–139.

    Article  Google Scholar 

  • Urabe, J. & Y. Watanabe, 1992. Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnology and Oceanography 37: 244–251.

    CAS  Google Scholar 

  • Urabe, J. & Y. Watanabe, 1993. Implications of sestonic elemental ratio in zooplankton ecology: Reply to the comment by Brett. Limnology and Oceanography 38: 1337–1340.

    CAS  Google Scholar 

  • Urabe, J., J. Clasen & R.W. Sterner, 1997. Phosphorus limitation of Daphnia growth: Is it real? Limnology and Oceanography 42: 1436–1443.

    CAS  Google Scholar 

  • Van der Zanden, M. J., B. J. Shuter, N. Lester & J. B. Rasmussen, 1999. Patterns of food chain lengths in lakes: A stable isotope study. The American Naturalist 154: 406–416.

    Google Scholar 

  • Von Elert, E., 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich algae with single fatty acids. Limnology and Oceanography 47: 1764–1773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Verschoor, A.M., Boonstra, H., Meijer, T. (2005). Application of stable isotope tracers to studies of zooplankton feeding, using the rotifer Brachionus calyciflorus as an example. In: Herzig, A., Gulati, R.D., Jersabek, C.D., May, L. (eds) Rotifera X. Developments in Hydrobiology, vol 181. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4408-9_54

Download citation

Publish with us

Policies and ethics