Skip to main content

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

Phosphate (Pi) is considered to be one of the least available plant nutrients in the soil. High-affinity Pi transporters are generally accepted as entry points for Pi in the roots. The physiological, genetic, molecular and biochemical analysis of phosphate starvation response mechanisms highlight the ability of plants to adapt and thrive under phosphate limiting conditions. These responses help them enhance the availability of Pi, increase its uptake and improve the use-efficiency of Pi within a plant. Enhanced ability to acquire Pi appears to be regulated at the level of transcription of high-affinity phosphate transporters. These transporters are encoded by a family of small number of genes having characteristic tissue and organ associated expression patterns. Many of them are strongly induced during phosphate deficiency thus providing plants with enhanced ability to acquire and transfer phosphate. In addition, plants also activate biochemical mechanisms that could lead to increased acquisition of phosphate from both inorganic and organic phosphorus sources in the soil. Furthermore, altered root morphology and mycorrhizal symbiosis further enhance the ability of plants to acquire Pi. Interestingly most of these responses appear to be coordinated by changes in cellular phosphate levels. It is becoming apparent that phosphate acquisition and utilization are associated with activation or inactivation of a host of genes in plants. In this article we describe molecular, biochemical and physiological factors associated with phosphate acquisition by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abel S, Ticconi C A and Delatorre D A 2002 Phosphate sensing in higher plants. Physiol. Plant 115: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Able S, Nurnberger T, Ahnert V, Krauss G and Glund K 2000 Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonueleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol. 122: 543–552.

    Google Scholar 

  • Ae N, Arihara J, Okada K, Yoshihara T and Johansen C 1990 Phosphorus uptake by pigeon pea and its role in cropping systems of Indian subcontinent. Science 248: 477–480.

    CAS  Google Scholar 

  • Amijee F, Barroclough P B and Tinker P B 1991 Modeling phosphorus uptake and utilization by plants. In Phosphorus Nutrition of Grain Legumes in the Semi-arid Tropics. Eds. C Johansen. K K Lee and K L Sahrawat. pp. 62–75. ICRISAT, Hydrabad.

    Google Scholar 

  • Anghinoni I and Barber S A 1980 Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agron. J. 172: 655–668.

    Google Scholar 

  • Baldwin J C, Karthikeyan A S and Raghothama K G 2001 LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol. 125: 728–737.

    Article  CAS  PubMed  Google Scholar 

  • Barber S A and Cushman J 1981 Nitrogen uptake model for agronomic crop. In Modeling Waste Water Renovation-Land Treatment. Ed. IK Iskander. pp. 382–409. Wiley-Interscience, New York, NY.

    Google Scholar 

  • Barber S A and Silverbush M 1984 Plant root morphology and nutrient uptake. In Roots, Nutrient and Water Influx and Plant Growth, pp. 65–88. ASA Special Publication 49, ASA, Madison, WI.

    Google Scholar 

  • Barber S A, Walker J M and Vasey E H 1963 Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J. Agric. Food Chem. 11: 204–207.

    Article  CAS  Google Scholar 

  • Bariola P A, Howard C J, Taylor C P, Verburg M T, Jaglan V D and Green P J 1994 The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J. 6: 673–685.

    Article  CAS  PubMed  Google Scholar 

  • Bariola P A, Macintosh G C and Green P J 1999 Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 and RNS2 elevates anthocyanln accumulation. Plant Physiol. 119: 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Batjes N H 1997 A world data set of derived soil properties by FAO-UNESCO soil unit for global modeling. Soil Use Manage 13: 9–16.

    Google Scholar 

  • Bates T R and Lynch J P 2001 Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236: 243–250.

    Article  CAS  Google Scholar 

  • Borstlap A C 1983 The use of model-fitting in the interpretation of ‘dual’ uptake isotherms. Plant Cell Environ. 6: 407–416.

    Google Scholar 

  • Bieleski R L 1973 Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. 24: 225–252.

    Article  CAS  Google Scholar 

  • Borch K, Bouma T J, Lynch J P and Brown K M 1999 Ethylene: a regulator of root architectural response to soil phosphorus availability. Plant Cell Environ. 22: 425–431.

    Article  CAS  Google Scholar 

  • Bosse D and Kock M 1998 Influence of phosphate starvation on phosphohydrolases during development of tomato seedlings. Plant Cell Environ. 21: 325–332.

    Article  CAS  Google Scholar 

  • Bowling D J F and Dunlop J 1978 Uptake of phosphate by white clover. 1. Evidence for an electrogenic phosphate pump. J. Exp. Bot. 29: 1139–1146.

    CAS  Google Scholar 

  • Cogliatti D H and Santa Maria G E 1990 Influx and efflux of phosphorus in roots of wheat plants in non-growthlimiting concentrations of phosphorus. J. Exp. Bot. 41: 601–607.

    CAS  Google Scholar 

  • Daram P, Brunner S, Ararhein N and Bucher M 1998 Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206: 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N and Bucher M 1999 Pht2;l encodes a low affinity phosphate transporter from Arabidopsis. Plant Cell 11: 2153–2166.

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E and Randall P J 1995 Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107: 207–213.

    CAS  PubMed  Google Scholar 

  • Dinkelaker B, Hengeler C and Marschner H 1995 Distribution and function of proteoid roots and other root clusters. Bot. Aeta. 108: 183–200.

    Google Scholar 

  • Dong B, Rengel Z and Delhaize E 1998 Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Plants. 205: 251–256.

    CAS  Google Scholar 

  • Dong B, Ryan P R, Rengel Z and Delhaize E 1999 Phosphate uptake in Arabidopsis thaliana: dependence of uptake on the expression of transporter gene and internal phosphate concentrations. Plant Cell Environ. 22: 1455–1461.

    Article  CAS  Google Scholar 

  • Drew M C and Saker L R 1984 Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of nonallosteric regulation. Planta 160: 500–507.

    CAS  Google Scholar 

  • Duff S M G, Lefebvre D D and Plaxton W C 1991 Phosphatestarvation response in plant cells: de novo synthesis and degradation of acid phosphatases. Proc. Natl. Acad. Sci. USA. 88: 9538–9542.

    CAS  PubMed  Google Scholar 

  • Duff S M G, Sarath G and Plaxton W C 1994 The role of acid phosphatase in plant phosphorus metabolism. Physiol. Planta. 90: 791–800.

    CAS  Google Scholar 

  • Dunlop J, Phung H T, Meeking R and White D W R 1997 The kinetics associated with phosphate absorption by Arabidopsis and its regulation by phosphorus status. Aust. J. Plant Physiol. 24: 623–629.

    CAS  Google Scholar 

  • Elliott G, Lynch J and Läuchi A 1984 Influx and efflux of P in roots of intact maize plants. Plant Physiol. 76: 336–341.

    CAS  Google Scholar 

  • Epstein E, Rains D W and Elzam O E 1963 Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA. 49: 684–692.

    CAS  Google Scholar 

  • Eswaran H, Reich P and Beinroth F 1997 Global distribution of soils with acidity. In Plant-Soil Interactions at Low pH. Ed. Moniz et al. pp. 159–164. Brazilian Soil Science Society, Belo Horizonte.

    Google Scholar 

  • Föhse D, Claassen N and Jungk A 1991 Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant Soil 132: 261–272.

    Google Scholar 

  • Franco-Zorrilla J M, Gonzalez E, Bustos R, Linhares F, Leyva A and Paz-Ares J 2004 The transcriptional control of plant responses to phosphate limitation. JExp. Bot. 55: 285–293.

    CAS  Google Scholar 

  • Furihata T, Suzuki M and Sakurai H 1992 Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiol. 33: 1151–1157.

    CAS  Google Scholar 

  • Gahoonia T S and Nielsen N E 1998 Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil 198: 147–152.

    Article  CAS  Google Scholar 

  • Gilbert G A, Allan D L and Vance C P 1997 Phosphorus deficiency in white lupin alters root development and metabolism. In Radical Biology: Advances and perspectives on the function of plant roots. Eds. H E Bores, J P Lynch and D Eissenstat. pp. 92–103. American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  • Gilbert G A, Knight J D, Vance C P and Allan D L 1999 Acid phosphatases activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22: 801–810.

    Article  CAS  Google Scholar 

  • Gilbert G A, Knight J D, Vance C P and Allan D L 2000 Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann. Bot. 85: 921–928.

    Article  CAS  Google Scholar 

  • Glass A D M and Siddiqi M Y 1984 The control of nutrient uptake rates in relation to the inorganic composition of plants. Adv. Plant Nutr. 1: 103–147.

    CAS  Google Scholar 

  • Goldstein A H 1992 Phosphate starvation inducible enzymes and proteins in higher plants. In Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins. Ed. J L Wray. pp. 25–44. Cambridge University Press

    Google Scholar 

  • Graham J H and Miller R M 2005 Mycorrhizas: Gene to function. Plant Soil 274, 79–100.

    Article  CAS  Google Scholar 

  • Green P J 1994 The ribonucleases of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 421–445.

    Article  CAS  Google Scholar 

  • Grinsted M J, Hedley M J, White R E and Nye P H 1982 Plantinduced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. I. pH change and the increase in P concentration in the soil solution. New Phytol. 91: 19–29.

    CAS  Google Scholar 

  • Hamburger D, Rezzonico E, MacDonald-Comber P J, Somerville C and Poirier Y 2002 Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14: 889–902.

    Article  CAS  PubMed  Google Scholar 

  • Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swamp R, Woolaway K E and White P J 2003 Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132: 578–596.

    Article  CAS  PubMed  Google Scholar 

  • Harrison M J 1999 Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 361–389.

    Article  CAS  PubMed  Google Scholar 

  • Harrison M J, Dewbre G R and Liu J 2002 A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413–2429.

    Article  CAS  PubMed  Google Scholar 

  • Harrison M J and Van Buuren M L 1995 A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626–629.

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P 2001 Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173–195.

    Article  CAS  Google Scholar 

  • Hoffland E, Findenegg G R and Nelemans J A 1989 Solubilization of rock phosphate by rape. Plant Soil 113: 155–160.

    CAS  Google Scholar 

  • Holford I C R 1997 Soil phosphorus: its measurement, and its uptake by plants. Aust. J. Soil Res. 35: 227–239.

    CAS  Google Scholar 

  • Johnson J F, Allan P L and Vance C P 1996 Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol. 112: 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Jungk A 2001 Root hairs and the acquisition of plant nutrients from soil. J. Plant Nutr. Soil Sci. 164: 121–129.

    Article  CAS  Google Scholar 

  • Jungk A, Seeeling B and Gerke J 1993 Mobilization of different phosphate fractions in the rhizosphere. Plant Soil 155/156: 91–94.

    Article  Google Scholar 

  • Karthikeyan A S, Varadarajan D K, Mukatira U T, D’Urzo M P, Damaz B and Raghothama K G 2002 Regulated expression of Arabidopsis phosphate transporters. Plant Physiol. 130: 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Kochian L V and Lucas W J 1982 A re-evaluation of the carrier-kinetic approach to ion transport in roots of higher plants. What’s new in Plant Physiology. Plant Physiol. 13: 45–48.

    Google Scholar 

  • Kock M, Loffier A, Abel S and Glund K 1995 Structural and reg-ulatory properties of a family of phosphate starvation induced ribonucleases from tomato. Plant Mol. Biol. 27: 477–485.

    CAS  PubMed  Google Scholar 

  • Lee R B and Ratcliffe RG 1993 Nuclear magnetic resonance studies of the location and function of plant nutrients in vivo. Plant Soil 155/156: 45–55.

    Article  Google Scholar 

  • Lefebvre D D, Duff S M G, Fife C A, Julien-Inalsingh C and Plaxton W C 1990 Response to phosphate deprivation in Brassica nigra suspension cells. Plant Physiol. 93: 504–511.

    CAS  Google Scholar 

  • Leggewie G, Willmitzer L and Riesmeier J W 1997 Two cD-NAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. Plant Cell 9: 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M and Wang D 2002 Purple acid phosphatases of Arabidopsis thaliana. J. Biol. Chem. 277: 27772–27781.

    CAS  PubMed  Google Scholar 

  • Liu C, Muchhal U S, Mukatira U, Kononowicz A K and Raghothama K G 1998 Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 116: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Uhde-Stone C, Li A, Vance C and Allan D 2001 A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.) Plant Soil 237: 257–266.

    Article  CAS  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanches-Calderon L, Nieto-Jacobo M F, Simposon J and Herrera-Estrella L 2002 Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129: 244–256.

    Article  CAS  PubMed  Google Scholar 

  • Lynch J P 1995 Root architecture and plant productivity. Plant Physiol. 109: 7–13.

    CAS  PubMed  Google Scholar 

  • Lynch, D Eissenstat, pp. 81–92. Amer. Soc. Plant Physiol.

    Google Scholar 

  • Lynch J P and Beebe S E 1995 Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortSci. 30: 1165–1171.

    CAS  Google Scholar 

  • Ma Z, Walk T C, Marcus A and Lynch J P 2001 Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: A modeling approach. Plant Soil 236: 221–235.

    Article  CAS  Google Scholar 

  • Marschner H 1995 Mineral nutrition in plants. 2nd ed. Academic Press, San Diego, CA.

    Google Scholar 

  • Martin A C, del Pozo J C, Iglesias J, Rubio V, Solano R, de la Pena A, Leyva A and Paz-Ares J 2000 Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24: 559–567.

    CAS  PubMed  Google Scholar 

  • Masaoka Y U, Kojima M, Sugihara S, Yoshihara T, Koshino M and Ichihara A 1993 Dissolution of ferric phosphate by alfalfa (Medicago sativa L.) root exudates. Plant Soil 155/156: 75–78.

    Article  Google Scholar 

  • Massonnearu A, Langlade N, Leon S, Smutny J, Vogt E, Neumann G and Martinoia E 2001 Metabolic changes associated with cluster root development hi white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213: 534–542.

    Google Scholar 

  • Miller S S, Allan P L, Menzhuber C J, Fedorova M and Vance C P 2001 Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorusstressed white lupin. Plant Physiol. 127: 594–606.

    Article  CAS  PubMed  Google Scholar 

  • Mimura T, Dietz K J, Kaiser W, Schramm M J, Kaiser G and Heber U 1990 Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves. Planta 180: 139–146.

    Article  CAS  Google Scholar 

  • Mimura T, Reid R, Ohsumi Y and Smith F A 2002 Induction of the Na+/Pi cotransporter in the plasma membrane of Chara corallina requires external Na+ and low levels of Pi. Plant Cell Environ. 25: 1475–1481.

    Article  CAS  Google Scholar 

  • Mimura T, Sakano K and Shimmen T 1996 Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. Plant Cell Environ. 19: 311–320.

    CAS  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S and Shibata D 1997 Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Nad. Acad. Set. 94: 7098–7102.

    CAS  Google Scholar 

  • Muchhal U S and Raghothama K G 1999 Transcriptional regulation of plant phosphate transporters. Proc. Natl. Acad. Sci. USA 96: 5868–5872.

    Article  CAS  PubMed  Google Scholar 

  • Muchhal U S, Pardo J M and Raghothama K G 1996 Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93: 10519–10523.

    Article  CAS  PubMed  Google Scholar 

  • Mudge S R, Rae A L, Diatloff E and Smith F W 2002 Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. 31: 341–353.

    CAS  Google Scholar 

  • Mukatira U, Liu C, Varadarajan D K and Raghothama K G 2001 Negative regulation of phosphate starvation induced genes. Plant Physiol. 127: 1854–1862.

    Article  CAS  PubMed  Google Scholar 

  • Natr L 1992 Mineral nutrients-a ubiquitous stress factor for photo-synthesis. Photosynthetica 27: 271–294.

    CAS  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E and Römheld V 1999 Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208: 373–382.

    Article  CAS  Google Scholar 

  • Nissen P 1971 Uptake of sulfate by roots and leaf slices of barley: mediated by single, multiphasic mechanisms. Physiol. Planta. 24: 315–324.

    CAS  Google Scholar 

  • Okumura S, Mitsukawa N, Shirano Y and Shibata D 1998 Phosphate transporter gene family of Arabidopsis thaliana. DNA Res. 5: 1–9.

    Article  Google Scholar 

  • Pao S S, Paulsen I T and Saier M H 1998 Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62: 1–34.

    CAS  PubMed  Google Scholar 

  • Plaxton W C 1996 The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Mol. Biol. 47: 185–214.

    Article  CAS  Google Scholar 

  • Plaxton W C and Carswell M C 1999 Metabolic aspects of the phosphate starvation response in plants. In Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization. Ed. H R Lerner. pp. 349–372. Dekker, New York.

    Google Scholar 

  • Poirier Y, Somervffie C and Schiefelbein J 1991 A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 97: 1087–1093.

    CAS  Google Scholar 

  • Poirier Y and Bucher M 2002 Phosphate transport and homeostasis in Arabidopsis. In The Arabidopsis Book. Eds. C Somerville. and E M Meyerowitz., American Society of Plant Biologists Rockville, MD.

    Google Scholar 

  • del Pozo J C, Allona I, Rubio V, Layva A, de la Pena A, Aragoncillo C and Paz-Ares J 1999 A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/ oxidative stress conditions. Plant J 19: 579–589.

    PubMed  Google Scholar 

  • Raghothama K G 1999 Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 665–693.

    Article  CAS  PubMed  Google Scholar 

  • Raghothama K G 2000a Phosphate transport and signaling. Curr. Opin. Plant Biol. 3: 182–187.

    CAS  PubMed  Google Scholar 

  • Raghothama K G 2000b Phosphorus acquisition; plants in the driver’s seat! Trends Plant Sci. 5: 411–413.

    Article  Google Scholar 

  • Raghothama K G 2002 Phosphate acquisition: A biological process regulated at molecular level. Rev Plant Biochem Biotech. A Goyal, S L Mehta and M L Lodha (Eds). Society for Plant Biochemistry and Biotechnology. New Delhi. pp. 161–172.

    Google Scholar 

  • Rausch C and Bucher M 2002 Molecular mechanisms of phosphate transport in plants. Planta 216: 23–37.

    Article  CAS  PubMed  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Lalal M, Leggewie G, Amrhein N and Bucher M 2001 A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462–466.

    Article  CAS  PubMed  Google Scholar 

  • Reid R J, Mimura T, Ohsumi Y, Walker N A and Smith F A 2000 Phosphate transport in Chara: membrane transport via Na/Pi cotransport. Plant Cell Environ. 23: 223–228.

    Article  CAS  Google Scholar 

  • Richardson A E 1994 Soil microorganisms and phosphorus availability. Soil Biota, 50–62.

    Google Scholar 

  • Rubio V, Linhares F, Solano R, Mratm A C, Iglesias J, Leyva A and Paz-Ares J 2001 A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 15: 2122–2133.

    Article  CAS  PubMed  Google Scholar 

  • Runge-Metzger A 1995 Closing the cycle: Obstacles to efficient P management for improved global food security. In Phosphorus in the Global Environment: Transfers, cycles and Management. Ed. H Tiessen. pp. 27–42. John Wiley and Sons, NY.

    Google Scholar 

  • Ryan P R, Delhaize E and Jones D L 2001 Function and mechanism of organic anion exudation from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Sakano K 1990 Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.) G. Don. Plant Physiol. 93: 479–483.

    CAS  Google Scholar 

  • Sakano K, Yazaki Y and Mimura T 1992 Cytoplasmic acidification induced by inorganic phosphate uptake in suspension cultured Catharanthus roseus cells. Plant Physiol. 99: 672–680.

    CAS  Google Scholar 

  • Sakano K, Yazaki Y, Qkihara K, Mimura T and Kiyota S 1995 Lack of control in inorganic phosphate uptake by Catharanthus roseus (L.) G. Don cells. Plant Physiol. 108: 295–302.

    CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ju Ann S, Ryan P R, Delhaize E and Matsumoto H 2004 A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37: 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez PA, Shepherd K D, Soule M J, Place F M, Buresh R J 1997 Soil fertility replenishment in Africa. An investment in natural resource capital. In Replenishing Soil Fertility in Africa, Ed. R J Buresh, P A Sanchez, F Calhoun. pp. 1–46, Soil Sci. Soc. Amer. Madison.

    Google Scholar 

  • Sano T and Nagata 2002 The possible involvement of a phosphate-induced transcription factor encoded by Phi-2 gene from tobacco in ABA-signaling pathways. Plant Cell Physiol. 116: 447–453.

    Google Scholar 

  • Sas L, Rengel Z and Tang C 2001 Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci. 160: 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  • Schachtman D P, Reid R J and Ayling S M 1998 Phosphorus uptake by plants: From soil to cell. Plant Physiol. 116: 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W 2001 From faith to fate: ethylene signaling in morpho-genic responses to P and Fe deficiency. J Plant Nutr Soil Sci. 164: 147–154.

    Article  CAS  Google Scholar 

  • Sentenac H and Grignon C 1985 Effect of pH on orthophosphate uptake by corn roots. Plant Physiol. 77: 136–141.

    CAS  Google Scholar 

  • Shane M W and Lambers H 2005 Cluster roots: a curiosity in context. Plant Soil 274, 101–125.

    Article  CAS  Google Scholar 

  • Shimogawara K and Usuda H 1995 Uptake of inorganic phosphate by suspension-cultured tobacco cells: Kinetics and regulation by Pi starvation. Plant Cell Physiol. 36: 341–351.

    CAS  Google Scholar 

  • Shin H, Shin H S, Dewbre G R and Harrison M J 2004 Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J. 39: 629–642.

    Article  CAS  PubMed  Google Scholar 

  • Silverbush M and Barber S A 1983 Sensitivity of simulated phosphorus uptake to parameters used by a mechanisticmathematical model. Plant Soil 74: 93–100.

    Google Scholar 

  • Smith F W, Baling P M, Dong B and Delhaize E 1997 The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 11: 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Smith F W, Mudge S R, Rae A L and Glassop D 2003 Phosphate transport in plants. Plant and Soil. 248: 71–83.

    Article  CAS  Google Scholar 

  • Smith F W, Rae A L and Hawkesford M J 2000 Molecular mechanisms of phosphate and sulphate transport in plants. BBA 1465: 236–245.

    CAS  PubMed  Google Scholar 

  • Tadano T and Sakai H 1991 Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci. Plant Nutr. 37: 129–140.

    CAS  Google Scholar 

  • Thomas C, Sun Y, Naus K, Lloyd A and Roux S 1999 Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol. 119: 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Tu S I, Cananaugh J R and Boswell R T 1990 Phosphate uptake by excised maize root tips studied by in vivo31P nuclear magnetic resonance spectroscopy. Plant Physiol. 93: 778–784.

    CAS  Google Scholar 

  • Uhde-Stone C, Zinn K E, Ramirez-Yanez M, Li A, Vance C P and Allan D L 2003 Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to P deficiency. Plant Physiol. 131: 1064–1079.

    Article  CAS  PubMed  Google Scholar 

  • Ueki K 1978 Control of phosphatase release from cultured tobacco cells. Plant Cell Physiol. 19: 385–392.

    CAS  Google Scholar 

  • Ullrich-Eberius C I, Novacky A and Van Bel A J E 1984 Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161: 46–52.

    Article  CAS  Google Scholar 

  • Uta P, Kroken S, Roux C and Briggs S P 2002 Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 99: 13324–13329.

    Google Scholar 

  • Vance C P, Uhde-Stone C and Allan D L 2003 Phosphorus acquisition and use: critical adaptations by plants securing a nonrenewable resource. New Phytol. 157: 423–447.

    Article  CAS  Google Scholar 

  • Versaw W K and Harrison M J 2002 A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14: 1751–1766.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y H, Garvin D F and Kochian L V 2002 Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol. 130: 1361–1370.

    CAS  PubMed  Google Scholar 

  • Wasaki J, Omura M, Osaki M, Ito H, Matsui H, Shinano T and Todano T 1999 Structure of a cDNA for an acid phosphatase from phosphate-deficient lupin (Lupinus albus L.) roots. Soil Sci. Plant Nutr. 45: 439–449.

    CAS  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Safkata K, Sasaki T, Kishimoto N, Kikuchi S, Yamagishi M and Osaki M 2003 Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26: 1515–1523.

    Article  CAS  Google Scholar 

  • Williamson L C, Ribrioux S P C P, Fitter A H and Leyser HMD 2001 Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 126: 875–882.

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Pfosser M, Jonak C, Hirt H, Vincent O 1998 Evidence for the activation of a MAP kinase upon phosphate-induced cell cycle re-entry in tobacco cells. Physiol. Plant. 102: 532–538.

    Article  CAS  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F and Deng X W 2003 Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132: 1260–1271.

    Article  CAS  PubMed  Google Scholar 

  • Wykoff D D, Grossman A R, Weeks D P, Usuda H and Shimogawara K 1999 Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc. Natl. Acad, Sci. USA 96: 15336–15341.

    Article  CAS  Google Scholar 

  • Yan F, Zhu Y, Muller C, Zorb C and Schubert S 2002 Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol. 129: 1901–1911.

    Article  Google Scholar 

  • Yan X, Liao H, Trull MC, Beebe S E and Lynch J P 2001 Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiol. 125: 1901–1911.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Raghothama .

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Raghothama, K.G., Karthikeyan, A.S. (2005). Phosphate acquisition. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_2

Download citation

Publish with us

Policies and ethics