Skip to main content

Nesting Ocean Models

  • Chapter
Ocean Weather Forecasting

Abstract

This note is focused on the problem of providing boundary conditions for regional ocean models. It is shown that usual methods generally do not address the correct problem, but more or less approaching ones. A tentative classification of these methods is proposed. Then their theoretical foundations are discussed, and recommendations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auclair, F., S. Casitas, and P. Marsaleix, 2000: Application of an inverse method to coastal modelling. J. Atmos. Oceanic Technol., 17, 1368–1391.

    Article  Google Scholar 

  • Barnier, B., P. Marchesiello, A.P. de Miranda, J.M. Molines, and M. Coulibaly, 1998: A sigma coordinate primitive equation model for studying the circulation in the South Atlantic I, Model configuration with error estimates. Deep Sea Res., 45, 543–572.

    Article  Google Scholar 

  • Barth, A., A. Alvera-Azcarate, J.-M. Beckers, M. Rixen, L. Vandenbulke and Z. Ben Bouallegue, 2004: Multigrid state vector for data assimilation in a two-way nested model of the Ligurian sea. 36th International Liege Colloquium on Ocean Dynamics.

    Google Scholar 

  • Bennett, A.F., 2002: Inverse modeling of the ocean and atmosphere. Cambridge University Press, 2002.

    Google Scholar 

  • Berenger, J.-P., 1994: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114, 185–200.

    Article  Google Scholar 

  • Blayo, E., and L. Debreu, 2005: Revisiting open boundary conditions from the point of view of characteristic variables. Ocean Modelling, 9, 231–252.

    Article  Google Scholar 

  • Bounaim, A., 1999: Méthodes de décomposition de domaine: application a la resolution de problèmes de contrôle optimal. PhD thesis, Université Grenoble 1.

    Google Scholar 

  • Brezis, H., 1983: Analyse fonctionnelle. Masson.

    Google Scholar 

  • Bruneau, C.-H., 2000: Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations. Math. Mod. and Num. Anal., 34, 303–314.

    Article  Google Scholar 

  • Bruneau, C.H., and E. Creusé, 2001: Towards a transparent boundary condition for compressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 36, 807–840.

    Article  Google Scholar 

  • Cailleau, S., 2004: Validation de méthodes de contrainte aux frontières d’un modèle océanique: application à un modèle hauturier de l’Atlantique Nord et à un modèle regional du Golfe de Gascogne. PhD thesis, Université Grenoble 1.

    Google Scholar 

  • Camerlengo, A.L., and J.J. O’Brien, 1980: Open boundary conditions in rotating fluids. J. Comp. Phys., 35, 12–35.

    Article  Google Scholar 

  • Darblade, G., R. Baraille, A.-Y. Le Roux, X. Carton, and D. Pinchon, 1997: Conditions limites non réfléchissantes pour un modèle de Saint-Venant bidimensionnel barotrope linéarisé. C.R. Acad. Sci. Paris, Série 1, 324, 485–490.

    Google Scholar 

  • Davies, H.C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J.R. Meteorol. Soc, 102, 405–418.

    Article  Google Scholar 

  • Debreu, L., C. Vouland and E. Blayo, 2004a: AGRIF: Adaptive Grid Refinement in Fortran. To appear in Computers and Geosciences.

    Google Scholar 

  • Debreu, L., Y. De Visme and E. Blayo, 2004b: 4D Variational data assimilation for locally nested models. In preparation.

    Google Scholar 

  • Engquist, B., and A. Majda, 1977: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp., 31, 629–651.

    Article  Google Scholar 

  • Engquist, B., and L. Halpern, 1988: Far field boundary conditions for computation overlong time. Appl. Num. Math., 4, 21–45.

    Article  Google Scholar 

  • Flather, R.A., 1976: A tidal model of the north-west European continental shelf. Mem. Soc. R. Sci. Liege, 6(10), 141–164.

    Google Scholar 

  • Givoli, D., 1991: Non-reflecting boundary conditions. J. Comp. Phys., 94, 1–29.

    Article  Google Scholar 

  • Hedström, G.W., 1979: Nonreflecting boundary conditions for nonlinear hyperbolic system. J. Comp. Phys., 30, 222–237.

    Article  Google Scholar 

  • Holstad, A., and I. Lie, 1999: On transparent boundary conditions and nesting for ocean models. Research report 91, Norwegian Meteorological Institute, Oslo, Norway.

    Google Scholar 

  • Hu, F.Q., 1996: On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comp. Phys., 129, 201–219.

    Article  Google Scholar 

  • Hu, F. Q., 2001: A stable perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comp. Phys., 173, 455–480.

    Article  Google Scholar 

  • Jensen, T., 1998: Open boundary conditions in stratified ocean models. J. Mar. Sys., 16, 297–322.

    Article  Google Scholar 

  • Lie, I., 2001: Well-posed transparent boundary conditions for theshallow water equations. App. Num. Math., 38, 445–474.

    Article  Google Scholar 

  • Marchesiello, P., J. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling, 3, 1–20.

    Article  Google Scholar 

  • Martin, V., 2003: Méthodes de décomposition de domaine de type relaxation d’ondes pour des equations de l’océanographie. PhD thesis, Université Paris 13.

    Google Scholar 

  • Martinsen, E.A., and H.E. Engedahl, 1987: Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coastal Eng., 11, 603–627.

    Article  Google Scholar 

  • McDonald, A., 2002: A step toward transparent boundary conditions for meteorological models. Mon. Weath. Rev., 130, 140–151.

    Article  Google Scholar 

  • McDonald, A., 2003: Transparent boundary conditions for the shallow water equations: testing in a nested environment. Mon. Weath. Rev., 131, 698–705.

    Article  Google Scholar 

  • Miller, M.J., and A.J. Thorpe, 1981: Radiation conditions for the lateral boundaries of limited-area numerical models. Quart. J. R. Meteorol. Soc, 107, 615–628.

    Article  Google Scholar 

  • Navon, I.M., B. Neta, and M.Y. Hussaini, 2004: A perfectly matched layer approach to the linearized shallow water equations models: the split equation approach. Mon. Weather Rev., 132, 1369–1378.

    Article  Google Scholar 

  • Nycander, J., and K. Döös, 2003: Open boundary conditions for barotropic waves. J.Geophys. Res., 108(C5), 3168–3187.

    Article  Google Scholar 

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J.Comp. Phys., 21, 251–269.

    Article  Google Scholar 

  • Palma, E.D., and R.P. Matano, 1998: On the implementation of passive open boundary conditions for a general circulation model: the barotropic mode. J. Geophys. Res., 103(C1), 1319–1341.

    Article  Google Scholar 

  • Poinsot, T., and S.K. Lele, 1992: Boundary conditions for subsonic Navier-Stokes calculations. J. Comp. Phys., 101, 104–129.

    Article  Google Scholar 

  • Raymond, W.H., and H.L. Kuo, 1984: A radiation boundary condition for multidimensional flows. Quart. J.R. Met. Soc, 110, 535–551.

    Article  Google Scholar 

  • Röed, L.P., and C. Cooper, 1987: A study of various open boundary conditions for wind-forced barotropic numerical ocean models, in Three-dimensional models of marine andestuarine dynamics, edited by J.C.J. Nihoul and B.N. Jamart, pp. 305–335, Elsevier.

    Google Scholar 

  • Taillandier, V., V. Echevin, L. Mortier and J.-L. Devenon, 2004: Controlling boundary conditions with a four-dimensional variational data assimilation method in a non-stratified open coastal model. Ocean Dyn., 54, 284–298.

    Article  Google Scholar 

  • Tréguier, A.-M., B. Barnier, A.P. de Miranda, J.-M. Molines, N. Grima, M. Imbard, G. Madec, and C. Messager, 2001: An eddy permitting model of the Atlantic circulation: evaluating openboundary conditions. J. Geophys. Res, 106(C10), 22115–22130.

    Article  Google Scholar 

  • Tsynkhov, S.V., 1998: Numerical solutions of problems on unbounded domains. A review. Appl. Numer. Math., 27, 456–532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Blayo, E., Debreu, L. (2006). Nesting Ocean Models. In: Chassignet, E.P., Verron, J. (eds) Ocean Weather Forecasting. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4028-8_5

Download citation

Publish with us

Policies and ethics