Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeliovich, A., and Vonshak, A. (1992). Anaerobic metabolism of Nitrosomonas europaea. Arch. Microbiol. 158, 267–270.

    Article  CAS  Google Scholar 

  • Abraham, Z. H. L., Lowe, D. J., and Smith, B. E. (1993). Purification and characterization of the dissimilatory nitrite reductase fom Alcaligenes xylosoxidans subsp. xylosoxidans (N.C.I.M.B. 11015): Evidence for the presence of both type 1 and type 2 copper centres. Biochem. J., 295, 587–593.

    CAS  PubMed  Google Scholar 

  • Adman, E. T., Godden, J. W., and Turley, S. (1995). The structure of copper-nitrite reductase from Achromobacter cycloclastes at five pH values, with NO2-bound and with type II copper depleted. J. Biol. Chem., 270, 27458–27474.

    CAS  PubMed  Google Scholar 

  • Alefounder, P. R., and Ferguson, S. J. (1980). The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans. Biochem. J., 192, 231–240.

    CAS  PubMed  Google Scholar 

  • Allen, J. W., Watmough, N. J., and Ferguson, S. J. (2000). A switch in heme axial ligation prepares Paracoccus pantotrophus cytochrome cd1 for catalysis. Nat. Struct. Biol., 7, 885–888.

    CAS  PubMed  Google Scholar 

  • Amarger, N. (2001). Rhizobia in the field. Adv. Agron., 73, 109–168.

    CAS  Google Scholar 

  • Appleby, C. A. (1984). Leghemoglobin and Rhizobium respiration. Ann. Rev. Plant Physiol., 35, 443–478.

    CAS  Google Scholar 

  • Arai, H., Igarashi, Y., and Kodama, T. (1994). Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 58, 1286–1291.

    CAS  PubMed  Google Scholar 

  • Arai, H., Igarashi, Y., and Kodama, T. (1995a). The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. BBA-Gene Struct. Express, 1261, 279–284.

    Google Scholar 

  • Arai, H., Igarashi, Y., and Kodama, T. (1995b). Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett., 371, 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Arrese, I. C., Minchin, F. R., Gordon, A. J., and Nath, A. K. (1997). Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate. J. Exp. Bot., 309, 905–913.

    Google Scholar 

  • Bacanamwo, M., and Purcell, L. C. (1999). Soybean dry matter and N accumulation responses to flooding stress and hypoxia. J. Exp. Bot., 50, 689–696.

    Article  CAS  Google Scholar 

  • Baker, S. C., Ferguson, S. J., Ludwig, B., Page, M. D., Richter, O. M. H., and Van Spanning, R. J. M. (1998). Molecular genetics of the genus Paracoccus: Metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev., 62, 1046–1078.

    CAS  PubMed  Google Scholar 

  • Baker, S. C., Saunders, N. F. W., Willis, A. C., Ferguson, S. J., Hajdu, J., and Fulop, V. (1997). Cytochrome cd1 structure: Unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propellor folds. J. Mol. Biol., 269, 440–455.

    Article  CAS  PubMed  Google Scholar 

  • Ballard, A. L., and Ferguson, S. J. (1988). Respiratory nitrate reductase from Paracoccus denitrificans. Evidence for two b-type heams in the gamma subunit and properties of a water-soluble active enzyme containing alpha and beta subunits. Eur. J. Biochem., 174, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Bandhari, B., Naik, M. S., and Nicholas, D. J. D. (1984). ATP production coupled to denitrification of nitrate in Rhizobium japonicum grown in culture and in the bacteroids from Glycine meliloti. Science, 293, 668–672.

    Google Scholar 

  • Barnett, M. J., Fisher, R. F., Jones, T., Komp, C., Abola, A. P., Barloy-Hubler, et al. (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. USA, 98, 9883–9888.

    CAS  PubMed  Google Scholar 

  • Bartnikas, T. B., Tosques, I. E., Laratta, W. P., Shi, J. R., and Shapleigh, J. P. (1997). Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J. Bacteriol., 179, 3534–3540.

    CAS  PubMed  Google Scholar 

  • Baumann, B., Snozzi, M., Zehnder, A. J. B., and Vandermeer, J. R. (1996). Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J. Bacteriol., 178, 4367–4374.

    CAS  PubMed  Google Scholar 

  • Baumann, B., Vandermeer, J. R., Snozzi, M., and Zehnder, A. J. B. (1997). Inhibition of denitrification activity but not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH. Antonie van Leeuwenhoek, 72, 183–189.

    CAS  PubMed  Google Scholar 

  • Beaumont, H. J., Hommes, N. G., Sayavedra-Soto, L. A., Arp, D. J., Arciero, D.M., Hooper, A. B., et al. (2002). Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite. J. Bacteriol., 184, 2557–2560.

    Article  CAS  PubMed  Google Scholar 

  • Bedzyk, L., Wang, T., and Ye, R. W. (1999). The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J. Bacteriol., 181, 2802–2806.

    CAS  PubMed  Google Scholar 

  • Bell, L. C., Page, M. D., Berks, B. C., Richardson, D. J., and Ferguson, S. J. (1993). Insertion of transposon Tn5 into a structural gene of the membrane-bound nitrate reductase of Thiosphaera pantotropha results in anaerobic overexpression of periplasmic nitrate reductase activity. J. Gen. Microbiol., 139, 3205–3214.

    CAS  PubMed  Google Scholar 

  • Bell, L. C., Richardson, D. J., and Ferguson, S. J. (1992). Identification of nitric oxide reductase activity in Rhodobacter capsulatus-The electron transport pathway can either use or bypass both cytochrome-c2 and the cytochrome-bc1 complex. J. Gen. Microbiol., 138, 437–443.

    CAS  PubMed  Google Scholar 

  • Bergmann, D. J., Arciero, D. M., and Hooper, A. B. (1994). Organization of the hao gene cluster of Nitrosomonas europaea: Genes for two tetraheme c cytochromes. J. Bacteriol., 176, 3148–3153.

    CAS  PubMed  Google Scholar 

  • Berks, B. C. (1996). A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol., 22, 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Berks, B. C., Baratta, D., Richardson, D. J., and Ferguson, S. J. (1993). Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. Eur. J. Biochem., 212, 467–476.

    Article  CAS  PubMed  Google Scholar 

  • Berks, B. C., Ferguson, S. J., Moir, J. W. B., and Richardson, D. J. (1995). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BBA-Bioenergetics, 1232, 97–173.

    PubMed  Google Scholar 

  • Berks, B. C., Richardson, D. J., Reilly, A., Willis, A. C., and Ferguson, S. J. (1995). The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem. J., 309, 983–992.

    CAS  PubMed  Google Scholar 

  • Berks, B. C., Richardson, D. J., Robinson, C., Reilly, A., Aplin, R. T., and Ferguson, S. J. (1994). Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur. J. Biochem., 220, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Berks, B. C., Sargent, F., and Palmer, T. (2000). The Tat protein export pathway. Mol. Microbiol., 35, 260–274.

    Article  CAS  PubMed  Google Scholar 

  • Besson, S., Carneiro, C., Moura, J. J. G., Moura, I., and Fauque, G. (1995). A cytochrome cd(1)-type nitrite reductase isolated from the marine denitrifier Pseudomonas nautica 617: Purification and characterization. Anaerobe, 1, 219–226.

    Article  CAS  Google Scholar 

  • Blasco, F., Guigliarelli, B., Magalon, A., Asso, M., Giordano, G., and Rothery, R. A. (2001). The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell Mol. Life Sci., 58, 179–193.

    CAS  PubMed  Google Scholar 

  • Blasco, F., Iobbi, C., Ratouchniak, J., Bonnefoy, V., and Chippaux, M. (1990). Nitrate reductases of Escherichia coli: Sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol. Gen. Genet., 222, 104–111.

    CAS  PubMed  Google Scholar 

  • Blasco, F., Pommier, J., Augier, V., Chippaux, M., and Giordano, G. (1992). Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Mol. Microbiol., 6, 221–230.

    CAS  PubMed  Google Scholar 

  • Blasco, R., Castillo, F., and Martinez-Luque, M. (1997). The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. FEBS Lett., 414, 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Bock, E., Schmidt, I., Stueven, R., and Zart, D. (1995). Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol., 163, 16–20.

    CAS  Google Scholar 

  • Boogerd, F. C., Van Verseveld, H. W., and Stouthamer, A. H. (1983). Dissimilatory nitrate uptake in Paracoccus denitrificans via a DmH+-dependent system and a nitrate-nitrite antiport system. Biochim. Biophys. Acta, 723, 415–427.

    CAS  Google Scholar 

  • Braker, G., Fesefeldt, A., and Witzel, K. P. (1998). Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol., 64, 3769–3775.

    CAS  PubMed  Google Scholar 

  • Breton, J., Berks, B. C., Reilly, A., Thomson, A. J., Ferguson, S. J., and Richardson, D. J. (1994). Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase. FEBS Lett., 345, 76–80.

    Article  CAS  PubMed  Google Scholar 

  • Brondijk, T. H., Fiegen, D., Richardson, D. J., and Cole, J. A. (2002). Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol. Microbiol., 44, 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Brown, K., Djinovic-Carugo, K., Haltia, T., Cabrito, I., Saraste, M., Moura, J. J., Moura, I., Tegoni, M., and Cambillau, C. (2000). Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur. J. Biol. Chem., 275, 41133–41136.

    CAS  PubMed  Google Scholar 

  • Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J., Moura, I., and Cambillau, C. (2000). A novel type of catalytic copper cluster in nitrous oxide reductase. Nat. Struct. Biol. 7, 191–195.

    CAS  PubMed  Google Scholar 

  • Brudvig, G. W., Stevens, T. H., and Chan, S. I. (1980). Reactions of nitric oxide with cytochrome c oxidase. Biochemistry, 19, 5275–5285.

    Article  CAS  PubMed  Google Scholar 

  • Bursakov, S. A., Carneiro, C., Almendra, M. J., Duarte, R. O., Caldeira, J., Moura, I., and Moura, J. J. (1997). Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Biochem. Biophys. Res. Commun., 239, 816–822.

    Article  CAS  PubMed  Google Scholar 

  • Busby, S., and Ebright, R. H. (1997). Transcription activation at class II CAP-dependent promoters. Mol. Microbiol., 23, 853–859.

    Article  CAS  PubMed  Google Scholar 

  • Butland, G., Spiro, S., Watmough, N. J., and Richardson, D. J. (2001). Two conserved glutamates in the bacterial nitric oxide reductase are essential for activity but not assembly of the enzyme. J. Bacteriol., 183, 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Butler, C. S., Charnock, J. M., Bennett, B., Sears, H. J., Reilly, A. J., Ferguson, S. J., Garner, C. D., Lowe, D. J., Thomson, A. J., Berks, B. C., and Richardson, D. J. (1999). Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry, 38, 9000–9012.

    Article  CAS  PubMed  Google Scholar 

  • Carr, G. J.and Ferguson, S. J. (1990). Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim. Biophys. Acta, 1017, 57–62.

    CAS  PubMed  Google Scholar 

  • Carr, G. J., and Ferguson, S. J. (1990). The nitric oxide reductase of Paracoccus denitrificans. Biochem. J., 269, 423–429.

    CAS  PubMed  Google Scholar 

  • Carter, J. P., Richardson, D. J., and Spiro, S. (1995). Isolation and characterisation of a strain of Pseudomonas putida that can express a periplasmic nitrate reductase. Arch. Microbiol., 163, 159–166.

    CAS  PubMed  Google Scholar 

  • Cartron, M. L., Roldan, M. D., Ferguson, S. J., Berks, B. C., and Richardson, D. J. (2002). Identification of two domains and distal histidine ligands to the four haems in the bacterial ctype cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Biochem. J., 368, 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Casella, S., Shapleigh, J. P., Lupi, F., and Payne, W. J. (1988). Nitrite reduction in bacteroids of Rhizobium hedysari strain HCNT1. Arch. Microbiol., 149, 384–388.

    Article  CAS  Google Scholar 

  • Cha, J. S., and Cooksey, D. A. (1991). Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA, 88, 8915–8919.

    CAS  PubMed  Google Scholar 

  • Chan, Y., Mccormick, W., and Watson, R. (1997). A new nos gene downstream from nosDFY is essential for dissimilatory reduction of nitrous oxide by Rhizobium (Sinorhizobium) meliloti. Microbiology, 143, 2817–2824.

    CAS  PubMed  Google Scholar 

  • Chang, C. K., Timkovich, R., and Wu, W. (1986). Evidence that heme d1 is a 1,3-porphyrindione. Biochemistry, 25, 8447–8453.

    CAS  PubMed  Google Scholar 

  • Chang, C. K., and Wu, W. (1986). The porhyrindione structure of heme d1. J. Biol. Chem., 261, 8593–8596.

    CAS  PubMed  Google Scholar 

  • Chang, P. K., Ehrlich, K. C., Linz, J. E., Bhatnagar, D., Cleveland, T. E., and Bennett, J. W. (1996). Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr. Genet., 30, 68–75.

    CAS  PubMed  Google Scholar 

  • Chang, W.-C., Chen, J.-Y., Chang, T., Liu, M.-Y., Payne, W. J., Legall, J., and Chang, W.-C. (1998). The C-terminal segment is essential for maintaining the quaternary structure and enzyme activity of the nitro oxide forming nitrite reductase from Achromobacter cycloclastes. Biochem. Biophys. Res. Commu., 250, 782–785.

    CAS  Google Scholar 

  • Cheesman, M. R., Ferguson, S. J., Moir, J.W. B., Richardson, D. J., Zumft, W. G., and Thomson, A. J. (1997). Two enzymes with a common function but different heme ligands in the forms as isolated. Optical and magnetic properties of the heme groups in the oxidized forms of nitrite reductase, cytochrome cd1, from Pseudomonas stutzeri and Thiosphaera pantotropha. Biochemistry, 36, 16267–16276.

    Article  CAS  PubMed  Google Scholar 

  • Cheesman, M. R., Zumft, W. G., and Thomson, A. J. (1998). The MCD and EPR of the heme centers of nitric oxide reductase from Pseudomonas stutzeri-evidence that the enzyme is structurally related to the heme-copper oxidases. Biochemistry, 37, 3994–4000.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.-Y., Chang, W.-C., Chang, T., Chang, W.-C., Liu, M.-Y., Payne, W. J., and Legall, J. (1996). Cloning, characterization, and expression of the nitric oxide-generating nitrite reductase and of the blue copper protein genes of Achromobacter cycloclastes. Biochem. Biophys. Res. Commun., 219, 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen, J., Seefeldt, L. C., and Dean, D. R. (2000). Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. J. Biol. Chem., 275, 36104–36107.

    CAS  PubMed  Google Scholar 

  • Clegg, S., Yu, F., Griffiths, L., and Cole, J. A. (2002). The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: Two nitrate and three nitrite transporters. Mol. Microbiol., 44, 143–155.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. (1996). Nitrate reduction to ammonia by enteric bacteria: Redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett., 136, 1–11.

    CAS  PubMed  Google Scholar 

  • Coyle, C. L., Zumft, W. G., Kroneck, P. M. H., Körner, H., and Jakob, W. (1985). Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur. J. Biochem., 153, 459–467.

    Article  CAS  PubMed  Google Scholar 

  • Coyne, M. S., Arunakumari, A., Averill, B. A., and Tiedje, J. A. (1989). Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol., 55, 2924–2931.

    CAS  PubMed  Google Scholar 

  • Cramm, R., Siddiqui, R. A., and Friedrich, B. (1997). Two isofunctional nitric oxide reductases in Alcaligenes eutrophus h16. J. Bacteriol., 179, 6769–6777.

    CAS  PubMed  Google Scholar 

  • Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M. N., Scott, C., Thomson, A. J., Green, J., and Poole, R. K. (2002). NO sensing by FNR: Regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J., 21, 3235–3244.

    Article  CAS  PubMed  Google Scholar 

  • Cueto, M., Hernandez-Perera, O., Martin, R., Bentura, M. L., Rodrigo, J., Lamas, S., and Golvano, M. P. (1996). Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett., 398, 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Cutruzzola, F. (1999). Bacterial nitric oxide synthesis. Biochim. Biophys. Acta, 1411, 231–249.

    CAS  PubMed  Google Scholar 

  • Cuypers, H., Viebrock-Sambale, A., and Zumft, W. G. (1992). NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. J. Bacteriol., 174, 5332–5339.

    CAS  PubMed  Google Scholar 

  • Dandekar, T., Snel, B., Huynen, M., and Bork, P. (1998). Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci., 23, 324–328.

    Article  CAS  PubMed  Google Scholar 

  • Danneberg, G., Zimmer, W., and Bothe, H. (1986). Aspects of nitrogen fixation and denitrification by Azospirillum. Plant Soil, 90, 193–202.

    CAS  Google Scholar 

  • Darwin, A. J., Ziegelhoffer, E. C., Kiley, P. J., and Stewart, V. (1998). Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro. J. Bacteriol., 180, 4192–4198.

    CAS  PubMed  Google Scholar 

  • De Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H., and Van Spanning, R. J. M. (1994). Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Ant. van Leeuwenhoek, 66, 111–127.

    Google Scholar 

  • De Boer, A. P. N., Van Der Oost, J., Reijnders, W. N. M., Westerhoff, H. V., Stouthamer, A. H., and Van Spanning, R. J. M. (1996). Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur. J. Biochem., 242, 592–600.

    Article  PubMed  Google Scholar 

  • De Gier, J. W. L., Schepper, M., Reijnders, W. N. M., Van Dyck, S. J., Slotboom, D. J., Warne, et al. (1996). Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design. Mol. Microbiol., 20, 1247–1260.

    PubMed  Google Scholar 

  • Delgado, M. J., Drevon, J. J., and Bedmar, E. J. (1991). Denitrificacion by bacteroids of an uptake hydrogenase negative (Hup) and its isogenic Hup+ parental strain of Bradyrhizobium japonicum. FEMS Microbiol. Lett., 77, 157–162.

    Article  CAS  Google Scholar 

  • Delgado, M. J., Bonnard, N., Bedmar, E. J., and Müller, P. (2002). The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. The Fifth European Nitrogen Fixation Conference, 6-10 September, Norwich. Abstract.

    Google Scholar 

  • DelVecchio, V. G., Kapatral, V., Redkar, R. J., Patra, G., Mujer, C., Los, T., et al. (2002). The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. USA, 99, 443–448.

    Google Scholar 

  • Demoss, J. A., and Hsu, P. Y. (1991). NarK enhances nitrate uptake and nitrite excretion in Escherichia coli. J. Bacteriol., 173, 3303–3310.

    CAS  PubMed  Google Scholar 

  • Denariaz, G., Payne, W. J., and LeGall, J. (1991). The denitrifying nitrite reductase of Bacillus halodenitrificans. Biochim. Biophys. Acta, 1056, 225–232.

    CAS  Google Scholar 

  • Dias, J. M., Than, M. E., Humm, A., Huber, R., Bourenkov, G. P., Bartunik, H. D., et al. (1999). Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure Fold Des., 7, 65–79.

    CAS  PubMed  Google Scholar 

  • DiSpirito, A. A., Taaffe, L. R., Lipscomb, J. D., and Hooper, A. B. (1985). A blue copper oxidase from Nitrosomonas europaea. Biochim. Biophys. Acta, 827, 320–326.

    Google Scholar 

  • Doi, M. Y., Shioi, Y., Morita, K., and Takamiya, K. (1989). Two types of cytochrome cd1 in the aerobic photosynthetic bacterium Erythrobacter sp. Och 114. Eur. J. Biochem., 184, 521–527.

    Article  CAS  PubMed  Google Scholar 

  • Einsle, O., Stach, P., Messerschmidt, A., Klimmek, O., Simon, J., Kroger, A., and Kroneck, P. M. (2002). Crystallization and preliminary X-ray analysis of the membrane-bound cytochrome c nitrite reductase complex (NrfHA) from Wolinella succinogenes. Acta Crystallogr. D. Biol. Crystallogr., 58, 341–342.

    Article  PubMed  Google Scholar 

  • Farrar, J. A., Lappalainen, P., Zumft, W. G., Saraste, M., and Thomson, A. J. (1995). Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans. Eur. J. Biochem., 232, 294–303.

    Article  CAS  PubMed  Google Scholar 

  • Farrar, J. A., Thomson, A. J., Cheesman, M. R., Dooley, D. M., and Zumft, W. G. (1991). A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri)-Evidence from optical, EPR and MCD spectroscopy. FEBS Lett., 294, 11–15.

    Article  CAS  PubMed  Google Scholar 

  • Fenderson, F. F., Kumar, S., Adman, E. T., Liu, M. Y., Payne, W. J., and Legall, J. (1991). Amino acid sequence of nitrite reductase-A copper protein from Achromobacter cycloclastes. Biochemistry, 30, 7180–7185.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, S. J. (1994). Denitrification and its control. Anton van Leeuwenhoek Int. J. Gen. M., 66, 89–110.

    CAS  Google Scholar 

  • Ferguson, S. J. (1998). Nitrogen cycle enzymology. Curr. Opin. Chem. Biol., 2, 182–93.

    Article  CAS  PubMed  Google Scholar 

  • Firth, J. R., and Edwards, C. (1999). Effects of cultural conditions on denitrification by Pseudomonas stutzeri measured by membrane inlet mass spectrometry. J. Appl. Microbiol., 87, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, H. M. (1994). Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev., 58, 352–386.

    CAS  PubMed  Google Scholar 

  • Friedrich, T. (2001). Complex I: A chimaera of a redox and conformation-driven proton pump? J. Bioenerg. Biomembr., 33, 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara, T., and Fukumori, Y. (1996). Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. J. Bacteriol., 178, 1866–1871.

    CAS  PubMed  Google Scholar 

  • Fulop, V., Moir James, W. B., Ferguson S. J., and Hajdu, J. (1995). The anatomy of a bifunctional enzyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd-1. Cell, 81, 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Gangeswaran, R., Lowe, D. J., and Eady, R. R. (1993). Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii. Biochem. J., 289, 335–342.

    CAS  PubMed  Google Scholar 

  • George, S. J., Allen, J. W., Ferguson, S. J., and Thorneley, R. N. F. (2000). Time-resolved infrared spectroscopy reveals a stable ferric heme-NO intermediate in the reaction of Paracoccus pantotrophus cytochrome cd1 nitrite reductase with nitrite. J. Biol. Chem., 275, 33231–33237.

    CAS  PubMed  Google Scholar 

  • Gilles-Gonzalez, M. A., Gonzalez, G., and Perutz, M. F. (1995). Kinase activity of oxygen sensor FixL depends on the spin state of its heme iron. Biochemistry, 34, 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Gilles-Gonzalez, M. A., Gonzalez, G., Perutz, M. F., Kiger, L., Marden, M. C., and Poyart, C. (1994). Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochemistry, 33, 8067–8073.

    Article  CAS  PubMed  Google Scholar 

  • Girsch, P., and De Vries, S. (1997). Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans. Biochim. Biophys. Acta, 1318, 202–216.

    CAS  PubMed  Google Scholar 

  • Giuffre, A., Stubauer, G., Sarti, P., Brunori, M., Zumft, W. G., Buse, G., and Soulimane, T. (1999). The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: Evolutionary implications. Proc. Natl. Acad. Sci. USA, 96, 14718–14723.

    Article  CAS  PubMed  Google Scholar 

  • Glockner, A. B., Jüngst, A., and Zumft, W. G. (1993). Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a cytochrome cd1-free background (nirS) of Pseudomonas stutzeri. Arch. Microbiol., 160, 18–26.

    CAS  PubMed  Google Scholar 

  • Glockner, A. B., and Zumft, W. G. (1996). Sequence analysis of an internal 9.72-kb segment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri. Biochim. Biophys. Acta, 1277, 6–12.

    CAS  PubMed  Google Scholar 

  • Godden, J. W., Turley, S., Teller, D. C., Adman, E. T., Liu, M. Y., Payne, W. J., and LeGall, J. (1991). The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science, 253, 438–442.

    CAS  PubMed  Google Scholar 

  • Goldman, B. S., and Roth, J. R. (1993). Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J. Bacteriol., 175, 1457–1466.

    CAS  PubMed  Google Scholar 

  • Gong, W., Hao, B., and Chan, M. K. (2000). New mechanistic insights from structural studies of the oxygen-sensing domain of Bradyrhizobium japonicum FixL. Biochemistry, 39, 3955–3962.

    Article  CAS  PubMed  Google Scholar 

  • Gong, W., Hao, B., Mansy, S. S., Gonzalez, G., Gilles-Gonzalez, M. A., and Chan, M. K. (1998). Structure of a biological oxygen sensor: A new mechanism for heme-driven signal transduction. Proc. Natl. Acad. Sci. USA, 95, 15177–15182.

    CAS  PubMed  Google Scholar 

  • Goretski, J., Zarifou, O. C., and Hollocher, T. C. (1990). Steady-state nitric oxide concentrations during denitrification. J. Biol. Chem., 265, 11535–11538.

    CAS  PubMed  Google Scholar 

  • Green, J., Scott, C., and Guest, J. R. (2001). Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv. Microb. Physiol., 44, 1–34.

    CAS  PubMed  Google Scholar 

  • Grönberg, K. L. C., Roldan, M. D., Prior, L., Butland, G., Cheesman, M. R., Richardson, D. J., et al. (1999). A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: Implications for the evolution of energy-conserving heme-copper oxidases. Biochemistry, 38, 13780–13786.

    PubMed  Google Scholar 

  • Grove, J., Tanapongpipat, S., Thomas, G., Griffiths, L., Crooke, H., and Cole, J. (1996). Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol. Microbiol., 19, 467–481.

    Article  CAS  PubMed  Google Scholar 

  • Hallin, S.and Lindgren, P. E. (1999). PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol., 65, 1652–1657.

    CAS  PubMed  Google Scholar 

  • Hartig, E., Schiek, U., Vollack, K. U., and Zumft, W. G. (1999). Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J. Bacteriol., 181, 3658–3665.

    CAS  PubMed  Google Scholar 

  • Hayashi, N. R., Arai, H., Kodama, T., and Igarashi, Y. (1998). The nirQ gene, which is required for denitrification of Pseudomonas aeruginosa, can activate the RubisCO from Pseudomonas hydrogenothermophila. Biochim. Biophys. Acta, 1381, 347–350.

    CAS  PubMed  Google Scholar 

  • Heikkila, M. P., Honisch, U., Wunsch, P., and Zumft, W. G. (2001). Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri. J. Bacteriol., 183, 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  • Heis, B., Frunzke, K., and Zumft, W. G. (1989). Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J. Bacteriol., 171, 3288–3297.

    Google Scholar 

  • Hendriks, J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S., and Saraste, M. (2000). Nitric oxide reductases in bacteria. Biochim. Biophys. Acta, 1459, 266–273.

    CAS  PubMed  Google Scholar 

  • Hendriks, J., Warne, A., Gohlke, U., Haltia, T., Ludovici, C., Lubben, M., and Saraste, M. (1998). The active site of the bacterial nitric oxide reductase is a dinuclear iron center. Biochemistry, 37, 13102–13109.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, J. H., Jasaitis, A., Saraste, M., and Verkhovsky, M. I. (2002). Proton and electron pathways in the bacterial nitric oxide reductase. Biochemistry, 41, 2331–2340.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, D., and Rowe, J. J. (1988). Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J. Biol. Chem, 263, 7937–7939.

    CAS  PubMed  Google Scholar 

  • Hille, R. (1996). The mononuclear molybdenum enzymes. Chem. Rev., 96, 2757–2816.

    Article  CAS  PubMed  Google Scholar 

  • Hilton, J. C., and Rajagopalan, K. V. (1996). Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans as bis(molybdopterin guanine dinucleotide)molybdenum. Arch. Biochem. Biophys., 325, 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Hoehn, G. T., and Clark, V. L. (1992). Isolation and nucleotide sequence of the gene (aniA) encoding the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae. Infect Immun., 60, 4695–4703.

    CAS  PubMed  Google Scholar 

  • Hooper, A. B. (1968). A nitrite reducing enzyme from Nitrosomonas europaea. Biochim. Biophys. Acta, 162, 49–65.

    CAS  PubMed  Google Scholar 

  • Householder, T. C., Fozo, E. M., Cardinale, J. A., and Clark, V. L. (2000). Gonococcal nitric oxide reductase is encoded by a single gene, norB, which is required for anaerobic growth and is induced by nitric oxide. Infect. Immun., 68, 5241–5246.

    Article  CAS  PubMed  Google Scholar 

  • Householder, T. C., Belli, W. A., Lissenden, S., Cole, J. A., and Clark, V. L. (1999) cis-and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J. Bacteriol., 181, 541–551.

    CAS  PubMed  Google Scholar 

  • Howes, B. D., Abraham, Z. H., Lowe, D. J., Bruser, T., Eady, R. R., and Smith, B. E. (1994). EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the type 2 copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Biochemistry, 33, 3171–3177.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, S., and Layzell, D. B. (1993). Gas exchange of legume nodules and the regulation of nitrogenase. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 483–511.

    Article  CAS  Google Scholar 

  • Inatomi, K.-I. (1999). The subunit structure of nitrite reductase purified from the denitrifier Achromobacter cycloclastes. Biosci. Biotechnol. Biochem., 63, 2020–2022.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, T., Gotowda, M., Deligeer, A., Kataoka, K., Yamaguchi, K., Suzuki, S., Watanabe, H., Gohow, M., and Kai, Y. (1998). Type 1 Cu structure of blue nitrite reductase from Alcaligenes xylosoxidans GIFU 1051 at 2.05 A resolution: Comparison of blue and green nitrite reductases. J. Biochem., 124, 876–879.

    CAS  PubMed  Google Scholar 

  • Iwasaki, H., and Matsubara, T. (1971). Cytochrome c557 (551) and cytochrome cd of Alcaligenes faecalis. J. Biochem., 69, 847–857.

    CAS  PubMed  Google Scholar 

  • Jain, R., and Shapleigh, J. P. (2001). Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3. Microbiology, 147, 2505–2515.

    CAS  PubMed  Google Scholar 

  • Jones, A. M., and Hollocher, T. C. (1993). Nitric oxide reductase of Achromobacter cycloclastes. Biochim. Biophys. Acta, 1144, 359–366.

    CAS  Google Scholar 

  • Jormakka, M., Tornroth, S., Abramson, J., Byrne, B., and Iwata, S. (2002). Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli. Acta Crystallogr. D. Biol. Crystallogr., 58, 160–162.

    PubMed  Google Scholar 

  • Jüngst, A., Wakabayashi, S., Matsubara, H., and Zumft, W. G. (1991). The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consist of a cluster of mono-, di-and tetraheme proteins. FEBS Lett., 279, 205–209.

    PubMed  Google Scholar 

  • Jüngst, A., and Zumft, W. G. (1992). Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri. FEBS Lett., 314, 308–314.

    PubMed  Google Scholar 

  • Kanayama, Y., and Yamamoto, Y. (1991). Formation of nitrosylleghemoglobin in nodules of nitratetreated cowpea and pea plants. Plant Cell Physiol., 32, 19–24.

    CAS  Google Scholar 

  • Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., et al. (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res., 3, 109–136.

    CAS  PubMed  Google Scholar 

  • Kastrau, D. H. W., Heiss, B., Kroneck, P. M. H., and Zumft, W. G. (1994). Nitric oxide reductase from Pseudomonas stutzeri, a novel cytochrome bc complex-Phospholipid requirement, electron paramagnetic resonance and redox properties. Eur. J. Biochem., 222, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki, S., Arai, H., Kodama, T., and Igarashi, Y. (1997). Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: Sequencing and identification of a locus for heme d1 biosynthesis. J. Bacteriol., 179, 235–242.

    CAS  PubMed  Google Scholar 

  • Kester, R. A., De Boer, W., and Laanbroek, H. J. (1997). Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Appl. Environ. Microbiol., 63, 3872–3877.

    CAS  Google Scholar 

  • Kiley, P. J., and Beinert, H. (1998). Oxygen sensing by the global regulator, FNR: The role of the ironsulfur cluster. FEMS Microbiol. Rev., 22, 341–352.

    CAS  PubMed  Google Scholar 

  • Knowles, R. (1996). Denitrification: Microbiology and ecology. Life Support Biosph. Sci., 3, 31–34.

    CAS  PubMed  Google Scholar 

  • Kobayashi, M., Matsuo, Y., Takimoto, A., Suzuki, S., Maruo, F., and Shoun, H. (1996). Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J. Biol. Chem., 271, 16263–16267.

    CAS  PubMed  Google Scholar 

  • Koppenhofer, A., Turner, K. L., Allen, J. W., Chapman, S. K., and Ferguson, S. J. (2000). Cytochrome cd1 from Paracoccus pantotrophus exhibits kinetically gated, conformationally dependent, highly cooperative two-electron redox behavior. Biochemistry, 39, 4243–4249.

    CAS  PubMed  Google Scholar 

  • Korner, H. (1993). Anaerobic expression of nitric oxide reductase from denitrifying Pseudomonas stutzeri. Arch. Microbiol., 159, 410–416.

    Google Scholar 

  • Korner, H., and Zumft, W. G. (1989). Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol., 55, 1670–1676.

    CAS  PubMed  Google Scholar 

  • Koutny, M., and Kucera, I. (1999). Kinetic analysis of substrate inhibition in nitric oxide reductase of Paracoccus denitrificans. Biochem. Biophys. Res. Commun., 262, 562–564.

    CAS  PubMed  Google Scholar 

  • Koutny, M., Kucera, I., Tesarik, R., Turanek, J., and Van Spanning, R. J. M. (1999). Pseudoazurin mediates periplasmic electron flow in a mutant strain of Paracoccus denitrificans lacking cytochrome c550. FEBS Lett., 448, 157–159.

    CAS  PubMed  Google Scholar 

  • Krause, B., and Nealson, K. H. (1997). Physiology and enzymology involved in denitrification by Shewanella putrefaciens. Appl. Environ. Microbiol., 63, 2613–2618.

    CAS  PubMed  Google Scholar 

  • Kroneck, P. M., Antholine, W. E., Kastrau, D. H., Buse, G., Steffens, G. C., and Zumft, W. G. (1990). Multifrequency EPR evidence for a bimetallic center at the CuA site in cytochrome c oxidase. FEBS Lett., 268, 274–276.

    Article  CAS  PubMed  Google Scholar 

  • Kucera, I., Hedbavny, R., and Dadak, V. (1988). Separate binding sites for antimycin and mucidin in the respiratory chain of the bacterium Paracoccus denitrificans and their occurrence in other denitrificans bacteria. Biochem. J., 252, 905–908.

    CAS  PubMed  Google Scholar 

  • Kudo, T., Tomura, D., Liu, D. L., Dai, X. Q., and Shoun, H. (1996). Two isozymes of P450nor of Cylindrocarpon tonkinense: Molecular cloning of the cDNAs and genes, expressions in the yeast, and the putative NAD(P)H-binding site. Biochimie, 78, 792–799.

    Article  CAS  PubMed  Google Scholar 

  • Kukimoto, M., Nishiyama, M., Murphy, M. E. P., Turley, S., Adman, E. T., Horinouchi, S., and Beppu, T. (1994). X-Ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6. Roles of two copper atoms in nitrite reduction. Biochemistry, 33, 5246–5252.

    Article  CAS  PubMed  Google Scholar 

  • Kukimoto, M., Nishiyama, M., Tanokura, M., and Horinouchi, S. (2000). Gene organization for nitric oxide reduction in Alcaligenes faecalis S-6. Biosci. Biotechnol. Biochem., 64, 852–857.

    Article  CAS  PubMed  Google Scholar 

  • LeGall, J., Payne, W. J., Morgan, V., and DerVartanian, D. (1979). On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions. Biochem. Biophys. Res. Commun., 87, 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Lin J. T., Goldman B. S., and Stewart, V. (1994). The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5a1. J. Bacteriol., 176, 2551–2559.

    CAS  PubMed  Google Scholar 

  • Lin, J. T., and Stewart, V. (1998). Nitrate assimilation by bacteria. Adv. Microb. Physiol., 38, 1–30.

    Google Scholar 

  • Lindsay, M. R., Webb, R. I., Strous, M., Jetten, M. S., Butler, M. K., Forde, R. J., and Fuerst, J. A. (2001). Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell. Arch. Microbiol., 175, 413–429.

    Article  CAS  PubMed  Google Scholar 

  • Lissenden, S., Mohan, S., Overton, T., Regan, T., Crooke, H., Cardinale, J. A., Householder, T. C., Adams, P., O’Conner, C. D., Clark, V. L., Smith, H., and Cole, J. A. (2000). Identification of transcription activators that regulate gonococcal adaptation from aerobic to anaerobic or oxygenlimited growth. Mol. Microbiol., 37, 839–855.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. P., Takio, S., Satoh, T., and Yamamoto, I. (1999). Involvement in denitrification of the napKEFDABC genes encoding the periplasmic nitrate reductase system in the denitrifying phototrophic bacterium Rhodobacter sphaeroides f. sp. denitrificans. Biosci. Biotechnol. Biochem., 63, 530–536.

    Article  CAS  PubMed  Google Scholar 

  • Mancinelli, R. L., Cronin, S., and Hochstein, L. I. (1986). The purification and properties of a cd-type nitrite reductase from Paracoccus halodenitrificans. Arch. Microbiol., 145, 202–208.

    Article  CAS  PubMed  Google Scholar 

  • Marger, M. D., and Saier, Jr., M. H. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci., 18, 13–20.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine, A. S., McEwan, A. G., and Bailey, S. (1998). The high resolution crystal structure of DMSO reductase in complex with DMSO. J. Mol. Biol., 275, 613–623.

    Article  CAS  PubMed  Google Scholar 

  • McKay, D. B., and Steitz, T. A. (1981). Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature, 290, 744–749.

    Article  CAS  PubMed  Google Scholar 

  • McKenney, D. J., Drury, C. F., Findlay, W. I., Mutus, B., McDonnell, T., and Gajda, C. (1994). Kinetics of denitrification by Pseudomonas fluorescens: Oxygen effects. Soil Biol. Biochem., 26, 901–908.

    Article  CAS  Google Scholar 

  • Mellies, J., Jose, J., and Meyer, T. F. (1997). The Neisseria gonorrhoeae gene aniA encodes an inducible nitrite reductase. Mol. Gen. Genet., 256, 525–532.

    CAS  PubMed  Google Scholar 

  • Mesa, S., Gottfert, M., and Bedmar, E. J. (2001). The nir, nor, and nos denitrification genes are dispersed over the Bradyrhizobium japonicum chromosome. Arch. Microbiol., 176, 136–142.

    Article  CAS  PubMed  Google Scholar 

  • Mesa, S., Velasco, L., Manzanera, M. E., Delgado, M. J., and Bedmar, E. J. (2002a). Characterization and regulation of the nitric oxide reductase-encoding region of Bradyrhizobium japonicum. Microbiology, 148, 3553–3560.

    CAS  PubMed  Google Scholar 

  • Mesa, S., Hennecke, H., Bedmar, E. J., and Fischer, H. M. (2002b). The role of nnR in the control of Bradyrhizobium japonicum denitrification genes. The Fifth European Nitrogen Fixation Conference, 6-10 September, Norwich. Abstract.

    Google Scholar 

  • Michel, H. (1999). Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping-a discussion. Biochemistry, 38, 15129–15140.

    Article  CAS  PubMed  Google Scholar 

  • Miller, D. J., and Nicholas, D. J. D. (1985). Characterization of a soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea. J. Gen. Microbiol., 131, 2851–2854.

    CAS  Google Scholar 

  • Mitchell, D. M., Wang, Y., Alben, J. O., and Shapleigh, J. P. (1998). FT-IR analysis of membranes of Rhodobacter sphaeroides 2.4.3 grown under microaerobic and denitrifying conditions. Biochim Biophys. Acta, 1409, 99–105.

    CAS  PubMed  Google Scholar 

  • Mitchell, P. (1961). Coupling of phosphorylation to electron and proton transfer by a chemi-osmotic type of mechanism. Nature, 191, 144–148.

    CAS  PubMed  Google Scholar 

  • Moir, J. W., and Wood, N. J. (2001). Nitrate and nitrite transport in bacteria. Cell Mol. Life Sci., 58, 215–224.

    CAS  PubMed  Google Scholar 

  • Moir, J. W. B., Baratta, D., Richardson, D. J., and Ferguson, S. J. (1993). The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha: The role of pseudoazurin as an electron donor. Eur. J. Biochem., 212, 377–385.

    Article  CAS  PubMed  Google Scholar 

  • Moir, J. W. B., and Ferguson, S. J. (1994). Properties of a Paracoccus denitrificans mutant deleted in cytochrome c550 indicate that a copper protein can substitute for this cytochrome in electron transport to nitrite, nitric oxide and nitrous oxide. Microbiology-UK, 140, 389–397.

    CAS  Google Scholar 

  • Moreno-Vivian, C., and Ferguson, S. J. (1998). Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol. Microbiol., 29, 664–666.

    Article  PubMed  Google Scholar 

  • Moura, I., and Moura, J. J. (2001). Structural aspects of denitrifying enzymes. Curr. Opin. Chem. Biol., 5, 168–175.

    Article  CAS  PubMed  Google Scholar 

  • Murai, K., Miyake, K., Andoh, J., and Iijima, S. (1998). Cloning and nucleotide sequence of the nitric oxide reductase locus in Paracoccus denitrificans IFO 12442. J. Ferment. Bioeng., 86, 494–499.

    CAS  Google Scholar 

  • Murphy, M. E., Turley, S., and Adman, E. T. (1997). Structure of nitrite bound to copper-containing nitrite reductase from Alcaligenes faecalis. Mechanistic implications. J. Biol. Chem., 272, 28455–28460.

    Article  CAS  PubMed  Google Scholar 

  • Musser, S. M., and Chan, S. I. (1998). Evolution of the cytochrome c oxidase proton pump. J. Mol. Evol., 46, 508–520.

    CAS  PubMed  Google Scholar 

  • Myers, C. R., and Myers, J. M. (1997). Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol., 179, 1143–1152.

    CAS  PubMed  Google Scholar 

  • Myers, J. M., and Myers, C. R. (2000). Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol., 182, 67–75.

    CAS  PubMed  Google Scholar 

  • Nakahara, K., Shoun, H., Adachi, S., Iizuka, T., and Shiro, Y. (1994). Crystallization and preliminary Xray diffraction studies of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum. J. Mol. Biol., 239, 158–159.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara, K., Tanimoto, T., Hatano, K., Usuda, K., and Shoun, H. (1993). Cytochrome-P-450-55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J. Biol. Chem., 268, 8350–8355.

    CAS  PubMed  Google Scholar 

  • Noji, S., Nohno, T., Saito, T., and Taniguchi, S. (1989). The narK gene product participates in nitrate transport induced in Escherichia coli nitrate-respiring cells. FEBS Lett., 252, 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Nurizzo, D., Cutruzzola, F., Arese, M., Bourgeois, D., Brunori, M., Cambillau, C., and Tegoni, M. (1998). Conformational changes occurring upon reduction and NO binding in nitrite reductase from Pseudomonas aeruginosa. Biochemistry, 37, 13987–13996.

    Article  CAS  PubMed  Google Scholar 

  • Nurizzo, D., Silvestrini, M.-C., Mathieu, M., Cutruzzola, F., Bourgeois, D., Fulop, V., Hajdu, J., Brunori, M., Tegoni, M., and Cambillau, C. (1997). N-terminal arm exchange is observed in the 2.15 A crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure, 5, 1157–1171.

    Article  CAS  PubMed  Google Scholar 

  • O’Hara, G. M., and Daniel, R. M. (1985). Rhizobial denitrification. Ann. Rev. Soil Biol. Biochem., 17, 1–9.

    CAS  Google Scholar 

  • Olesen, K., Veselov, A., Zhao, Y., Wang, Y., Danner, B., Scholes, C. P., and Shapleigh, J. P. (1998). Spectroscopic, kinetic, and electrochemical characterization of heterologously expressed wild-type and mutant forms of copper-containing nitrite reductase from Rhodobacter sphaeroides 2.4.3. Biochemistry, 37, 6086–6094.

    Article  CAS  PubMed  Google Scholar 

  • Palmedo, G., Seither, P., Korner, H., Matthews, J. C., Burkhalter, R. S., Timkovich, R., and Zumft, W. G. (1995). Resolution of the nirD locus for heme d1 synthesis of cytochrome cd1 (respiratory nitrite reductase) from Pseudomonas stutzeri. Eur. J. Biochem., 232, 737–746.

    Article  CAS  PubMed  Google Scholar 

  • Papa, S., Capitanio, N., Glaser, P., and Villani, G. (1994). The proton pump of heme-copper oxidases. Cell Biol. Int., 18, 345–355.

    Article  CAS  PubMed  Google Scholar 

  • Park, S. Y., Shimizu, H., Adachi, S., Nakagawa, A., Tanaka, I., Nakahara, K., Shoun, H., Obayashi, E., Nakamura, H., Iizuka, T., and Shiro, Y. (1997). Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum. Nature Struct. Biol., 4, 827–832.

    Article  CAS  PubMed  Google Scholar 

  • Parkhill, J., Achtman, M., James, K. D., Bentley, S. D., Churcher, C., Klee, et al. (2000). Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature, 404, 502–506.

    Article  CAS  PubMed  Google Scholar 

  • Philippot, L., Mirleau, P., Mazurier, S., Siblot, S., Hartmann, A., Lemanceau, P., and Germon, J. C. (2001). Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes. Biochim. Biophys. Acta, 1517, 436–440.

    CAS  PubMed  Google Scholar 

  • Pohlmann, A., Cramm, R., Schmelz, K., and Friedrich, B. (2000). A novel NO-responding regulator controls the reduction of nitric oxide in Ralstonia eutropha. Mol. Microbiol., 38, 626–638.

    Article  CAS  PubMed  Google Scholar 

  • Poth, M. (1986). Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl. Environ. Microbiol., 52, 957–959.

    CAS  PubMed  Google Scholar 

  • Potter, L., Angove, H., Richardson, D., and Cole, J. (2001). Nitrate reduction in the periplasm of gram-negative bacteria. Adv. Microb. Physiol., 45, 51–112.

    CAS  PubMed  Google Scholar 

  • Potter, L. C., and Cole, J. A. (1999). Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem. J., 344, 69–76.

    CAS  PubMed  Google Scholar 

  • Preisig, O., Anthamattan, D., and Hennecke, H. (1993). Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc. Natl. Acad. Sci. USA, 90, 3309–3313.

    CAS  PubMed  Google Scholar 

  • Prudencio, M., Eady, R. R., and Sawers, G. (1999). The blue copper-containing nitrite reductase from Alcaligenes xylosoxidans: Cloning of the nirK gene and characterization of the recombinant enzyme. J. Bacteriol., 181, 2323–2329.

    CAS  PubMed  Google Scholar 

  • Rabin, R. S., and Stewart, V. (1993). Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate-regulated and nitrite-regulated gene expression in Escherichia coli K-12. J. Bacteriol., 175, 3259–3268.

    CAS  PubMed  Google Scholar 

  • Raitio, M., and Wikstrom, M. (1994). An alternative cytochrome oxidase of Paracoccus denitrificans functions as a proton pump. BBA-Bioenergetics, 1186, 100–106.

    CAS  Google Scholar 

  • Reitzer, L. J. (1996). Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine. In F. C. Neidhardt, et al. (Eds.), Escherichia coli and Salmonella: Cellular and molecular biology (pp. 391–407). Washington D.C.: ASM Press.

    Google Scholar 

  • Richardson, D., and Sawers, G. (2002). Structural biology. PMF through the redox loop. Science, 295, 1842–1843.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, D. J. (2000). Bacterial respiration: A flexible process for a changing environment. Microbiology, 146, 551–571.

    CAS  PubMed  Google Scholar 

  • Richardson, D. J., Berks, B. C., Russell, D. A., Spiro, S., and Taylor, C. J. (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol. Life Sci., 58, 165–178.

    CAS  PubMed  Google Scholar 

  • Richardson, D. J., McEwan, A. G., Page, M. D., Jackson, J. B., and Ferguson, S. J. (1990). The identification of cytochromes involved in the transfer of electrons to the periplasmic nitratereductase of Rhodobacter capsulatus. Eur. J. Biochem., 194, 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, D. J., and Watmough, N. J. (1999). Inorganic nitrogen metabolism in bacteria. Curr. Opin. Chem. Biol., 3, 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Roldan, M. D., Sears, H. J., Cheesman, M. R., Ferguson, S. J., Thomson, A. J., Berks, B. C., and Richardson, D. J. (1998). Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J. Biol. Chem., 273, 28785–28790.

    Article  CAS  PubMed  Google Scholar 

  • Rosch, C., Mergel, A., and Bothe, H. (2002). Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol., 68, 3818–3829.

    Article  CAS  PubMed  Google Scholar 

  • Rothery, R. A., Blasco, F., Magalon, A., Asso, M., and Weiner, J. H. (1999). The hemes of Escherichia coli nitrate reductase A (NarGHI): Potentiometric effects of inhibitor binding to NarI. Biochemistry, 38, 12747–12757.

    Article  CAS  PubMed  Google Scholar 

  • Rothery, R. A., Blasco, F., and Weiner, J. H. (2001). Electron transfer from heme bL to the [3Fe-4S] cluster of Escherichia coli nitrate reductase A (NarGHI). Biochemistry, 40, 5260–5268.

    CAS  PubMed  Google Scholar 

  • Rothery, R. A., Magalon, A., Giordano, G., Guigliarelli, B., Blasco, F., and Weiner, J. H. (1998). The molybdenum cofactor of Escherichia coli nitrate reductase A (NarGHI). Effect of a mobAB mutation and interactions with [Fe-S] clusters. J. Biol. Chem., 273, 7462–7469.

    Article  CAS  PubMed  Google Scholar 

  • Rowe, J. J., Ubbinkkok, T., Molenaar, D., Konings, W. N., and Driessen, A. J. M. (1994). NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli. Mol. Microbiol., 12, 579–586.

    CAS  PubMed  Google Scholar 

  • Sakurai, N., and Sakurai, T. (1997). Isolation and characterization of nitric oxide reductase from Paracoccus halodenitrificans. Biochemistry, 36, 13809–13815.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, N., and Sakurai, T. (1998). Genomic DNA cloning of the region encoding nitric oxide reductase in Paracoccus halodenitrificans and a structure model relevant to cytochrome oxidase. Biochem. Biophys. Res. Commun., 243, 400–406.

    CAS  PubMed  Google Scholar 

  • Sakurai, T., Sakurai, N., Matsumoto, H., Hirota, S., and Yamauchi, O. (1998). Roles of four iron centers in Paracoccus halodenitrificans nitric oxide reductase. Biochem. Biophys. Res. Commun., 251, 248–251.

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson, M. O. (1985). Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens. Appl. Environ. Microbiol., 50, 812–815.

    CAS  PubMed  Google Scholar 

  • Sann, R., Kostka, S., and Friedrich, B. (1994). A cytochrome cd1-type nitrite reductase mediates the first step of denitrification in Alcaligenes eutrophus. Arch. Microbiol., 161, 453–459.

    CAS  PubMed  Google Scholar 

  • Saraste, M. (1994). Structure and evolution of cytochrome oxidase. Anton Leeuwenhoek Int. J. Gen. M., 65, 285–287.

    CAS  Google Scholar 

  • Saraste, M., and Castresana, J. (1994). Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett., 341, 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Saraste, M., Holm, L., Lemieux, L., Lubben, M., and Vanderoost, J. (1991). The happy family of cytochrome oxidases. Biochem. Soc. Trans., 19, 608–612.

    CAS  PubMed  Google Scholar 

  • Saunders, N. F., Hornberg, J. J., Reijnders, W. N., Westerhoff, H. V., de Vries, S., and van Spanning, R. J. M. (2000). The NosX and NirX proteins of Paracoccus denitrificans are functional homologues: Their role in maturation of nitrous oxide reductase. J. Bacteriol., 182, 5211–5217.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, N. F., Houben, E. N., Koefoed, S., de Weert, S., Reijnders, W. N., Westerhoff, H. V., et al. (1999). Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Mol. Microbiol., 34, 24–36.

    Article  CAS  PubMed  Google Scholar 

  • Sawada, E., and Satoh, T. (1980). Periplasmic location of dissimilatory nitrate and nitrite reductases in a denitrifying phototrophic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol., 21, 205–210.

    CAS  Google Scholar 

  • Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K. V., and Rees, D. C. (1996). Crystal structure of DMSO reductase: Redox-linked changes in molybdopterin coordination. Science, 272, 1615–1621.

    CAS  PubMed  Google Scholar 

  • Schmidt, I., and Bock, E. (1997). Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol., 167, 106–111.

    Article  CAS  Google Scholar 

  • Sears, H. J., Bennett, B., Spiro, S., Thomson, A. J., and Richardson, D. J. (1995). Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans. Biochem. J., 310, 311–314.

    CAS  PubMed  Google Scholar 

  • Sears, H. J., Sawers, G., Berks, B. C., Ferguson, S. J., and Richardson, D. J. (2000). Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiology, 146, 2977–2985.

    CAS  PubMed  Google Scholar 

  • Sears, H. J., Spiro, S., and Richardson, D. J. (1997). Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbonlimited continuous cultures of Paracoccus denitrificans Pd1222. Microbiology, 143, 3767–3774.

    CAS  Google Scholar 

  • Shapleigh, J. P,.and Payne, W. J. (1985). Nitric oxide-dependent proton translocation in various denitrifiers. J. Bacteriol., 163, 837–840.

    CAS  PubMed  Google Scholar 

  • Shaw, A. L., Leimkuhler, S., Klipp, W., Hanson, G. R., and McEwan, A. G. (1999). Mutational analysis of the dimethylsulfoxide respiratory (dor) operon of Rhodobacter capsulatus. Microbiology, 145, 1409–1420.

    CAS  PubMed  Google Scholar 

  • Shaw, D. J., Rice, D. W., and Guest, J. R. (1983). Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli. J. Mol. Biol., 166, 241–247.

    CAS  PubMed  Google Scholar 

  • Shingler, V. (1996). Signal sensing by sigma(54)-dependent regulators: Derepression as a control mechanism. Mol. Microbiol., 19, 409–416.

    Article  CAS  PubMed  Google Scholar 

  • Shiro, Y., Fujii, M., Iizuka, T., Adachi, S., Tsukamoto, K., Nakahara, K., and Shoun, H. (1995). Spectroscopic and kinetic studies on reaction of cytochrome p450nor with nitric oxide-Implication for its nitric oxide reduction mechanism. J. Biol. Chem., 270, 1617–1623.

    CAS  PubMed  Google Scholar 

  • Shoun, H., Kano, M., Baba, I., Takaya, N., and Matsuo, M. (1998). Denitrification of actinomycetes and purification of dissimilatory nitrite reductase and azurin from Streptomyces thioluteus. J. Bacteriol., 180, 4413–4415.

    CAS  PubMed  Google Scholar 

  • Siddiqui, R.A., Warneckeeberz, U., Hengsberger, A., Schneider, B., Kostka, S., and Friedrich, B. (1993). Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J. Bacteriol., 175, 5867–5876.

    CAS  PubMed  Google Scholar 

  • Simon, J. (2002). Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol. Rev., 26, 285.

    CAS  PubMed  Google Scholar 

  • Smith, G. B., and Tiedje, J. M. (1992). Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl. Environ. Microbiol., 58, 376–384.

    CAS  PubMed  Google Scholar 

  • Snyder, S. W., and Hollocher, T. C. (1987). Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J. Biol. Chem., 262, 6515–6525.

    CAS  PubMed  Google Scholar 

  • Song, B., and Ward, B. B. (2002). Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. Unpublished data.

    Google Scholar 

  • Spencer, J. B., Stolowich, N. J., Roessner, C. A., and Scott, A. I. (1993). The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett., 335, 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Spiro, S. (1994). The FNR family of transcriptional regulators. Anton Leeuwenhoek Int. J. Gen. M., 66, 23–36.

    CAS  Google Scholar 

  • Stein, L. Y., and Arp, D. J. (1998). Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl. Environ. Microbiol., 64, 4098–4102.

    CAS  PubMed  Google Scholar 

  • Stewart, V. (1993). Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol. Microbiol., 9, 425–434.

    CAS  PubMed  Google Scholar 

  • Stiefel, E. I. (1996). Molding metallocenters for biology. Chem. Biol., 3, 643–644.

    Article  CAS  PubMed  Google Scholar 

  • Stolz, J. F., and Basu, P. (2002). Evolution of nitrate reductase: Molecular and structural variations on a common function. Chembiochem., 3, 198–206.

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer, A. H. (1991). Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans. J. Bioenerg. Biomembr., 23, 163–185.

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer, A. H. (1992). Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Anton Leeuwenhoek Int. J. Gen. M., 61, 1–33.

    CAS  Google Scholar 

  • Strange, R. W., Dodd, F. E., Abraham, Z. H., Grossmann, J. G., Bruser, T., Eady, R. R., et al. (1995). The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Nat. Struct. Biol., 2, 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Strange, R. W., Murphy, L. M., Dodd, F. E., Abraham, Z. H., Eady, R. R., Smith, B. E., and Hasnain, S. S. (1999). Structural and kinetic evidence for an ordered mechanism of copper nitrite reductase. J. Mol. Biol., 287, 1001–1009.

    Article  CAS  PubMed  Google Scholar 

  • Streeter, J. (1988). Inhibition of legume nodule formation and nitrogen fixation by nitrate. Crit. Rev. Plant Sci., 7, 1–23.

    CAS  Google Scholar 

  • Strous, M., Fuerst, J. A., Kramer, E. H., Logemann, S., Muyzer, G., van de Pas-Schoonen, K. T., et al. (1999). Missing lithotroph identified as new planctomycete. Nature, 400, 446–449.

    CAS  PubMed  Google Scholar 

  • Stuendl, U. M., Schmidt, I., Scheller, U., Schmid, R., Schunck, W. H., and Schauer, F. (1998). Purification and characterization of cytosolic cytochrome P450 forms from yeasts belonging to the genus Trichosporon. Arch. Biochem. Biophys., 357, 131–136.

    Google Scholar 

  • Stundl, U. M., Patzak, D., and Schauer, F. (2000). Purification of a soluble cytochrome P450 from Trichosporon montevideense. J. Basic Microbiol., 40, 289–292.

    CAS  PubMed  Google Scholar 

  • Suharti, K., Strampraad, M. J., Schroder, I., and de Vries, S. (2001). A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry, 40, 2632–2639.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, E., Horikoshi, N., and Kohzuma, T. (1999). Cloning, sequencing, and transcriptional studies of the gene encoding copper-containing nitrite reductase from Alcaligenes xylosoxidans NCIMB 11015. Biochem. Biophys. Res. Commun., 255, 427–431.

    CAS  PubMed  Google Scholar 

  • Takaya, N., Uchimura, H., Lai, Y., and Shoun, H. (2002). Transcriptional control of nitric oxide reductase gene (CYP55) in the fungal denitrifier Fusarium oxysporum. Biosc. Biotechnol. Biochem., 66, 1039–1045.

    CAS  Google Scholar 

  • Tettelin, H., Saunders, N. J., Heidelberg, J., Jeffries, A. C., Nelson, K. E., Eisen, J. A., et al., (2000). Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science, 287, 1809–1815.

    Article  CAS  PubMed  Google Scholar 

  • Timkovich, R., Dhesi, R., Martinkus, K. J., Robinson, M. K., and Rea, T. M. (1982). Isolation of Paracoccus denitrificans cytochrome cd1: comparative kinetics with other nitrite reductases. Arch. Biochem. Biophys., 215, 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Toffanin, A., Wu, Q., Maskus, M., Casella, S., Abruna, H. D., and Shapleigh, J. P. (1996). Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium “hedysari” strain HCNT1. Appl. Environ. Microbiol., 62, 4019–4025.

    CAS  PubMed  Google Scholar 

  • Tomura, D., Obika, K., Fukamizu, A., and Shoun, H. (1994). Nitric oxide reductase cytochrome P-450 gene, CYP 55, of the fungus Fusarium oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli. J. Biochem. Tokyo, 116, 88–94.

    CAS  PubMed  Google Scholar 

  • Tosques van, E., Kwiatkowski, A. V., Shi, J., and Shapleigh, J. P. (1997). Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J. Bacteriol., 179, 1090–1095.

    CAS  PubMed  Google Scholar 

  • Trumpower, B. L., and Gennis, R. B. (1994). Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu. Rev. Biochem., 63, 675–716.

    CAS  PubMed  Google Scholar 

  • Tyson, K. L., Cole, J. A., and Busby, S. J. W. (1994). Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase: Identification of common target heptamers for both NarP-and NarL-dependent regulation. Mol. Microbiol., 13, 1045–1055.

    CAS  PubMed  Google Scholar 

  • Uchimura, H., Enjoji, H., Seki, T., Taguchi, A., Takaya, N., and Shoun, H. (2002). Nitrate reductaseformate dehydrogenase couple involved in the fungal denitrification by Fusarium oxysporum. J. Biochem. (Tokyo), 131, 579–586.

    CAS  PubMed  Google Scholar 

  • Usuda, K., Toritsuka, N., Matsuo, Y., Kim, D.H., and Shoun, H. (1995). Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl. Environ. Microbiol., 61, 883–889.

    CAS  PubMed  Google Scholar 

  • Vairinhos, F., Wallace, W., and Nicholas, D. J. D. (1989). Simultaneous assimilation and denitrification of nitrate by Bradyrhizobium japonicum. J. Gen. Micro., 135, 189–193.

    CAS  Google Scholar 

  • Van de Graaf, A. A., Mulder, A., Debruijn, P., Jetten, M. S. M., Robertson, L. A., and Kuenen, J. G. (1995). Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol., 61, 1246–1251.

    PubMed  Google Scholar 

  • Van der Oost, J., Deboer, A. P. N., Degier, J. W. L., Zumft, W. G., Stouthamer, A. H., and Van Spanning, R. J. M. (1994). The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol. Lett., 121, 1–9.

    Article  PubMed  Google Scholar 

  • Velasco, L., Mesa, S., Delgado, M. J., and Bedmar, E. J. (2001). Characterization of the nirK gene encoding the respiratory, Cu-containing nitrite reductase of Bradyrhizobium japonicum. Biochim. Biophys. Acta, 1521, 130–134.

    CAS  PubMed  Google Scholar 

  • Vollack, K. U., Xie, J., Hartig, E., Romling, U., and Zumft, W. G. (1998). Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa. Microbiology, 144, 441–448.

    CAS  PubMed  Google Scholar 

  • Vollack, K. U., and Zumft, W. G. (2001). Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J. Bacteriol., 183, 2516–2526.

    Article  CAS  PubMed  Google Scholar 

  • Vygodina, T. V., Capitanio, N., Papa, S., and Konstantinov, A. A. (1997). Proton pumping by cytochrome c oxidase is coupled to peroxidase half of its catalytic cycle. FEBS Lett., 412, 405–409.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, T. A., Johnson, M. K., Greenwood, C., Barber, D., Springall, J. P., and Thomson, A. J. (1979). Some magnetic properties of Pseudomonas cytochrome oxidase. Biochem. J., 177, 29–39.

    CAS  PubMed  Google Scholar 

  • Wang, H., and Gunsalus, R. P. (2000). The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J. Bacteriol., 182, 5813–5822.

    CAS  PubMed  Google Scholar 

  • Warnecke-Eberz, U., and Friedrich, B. (1993). Three nitrate reductase activities in Alcaligenes eutrophus. Arch. Microbiol., 159, 405–409.

    Article  CAS  Google Scholar 

  • Watmough, N. J., Butland, G., Cheesman, M. R., Moir, J. W. B., Richardson, D. J., and Spiro, S. (1999). Nitric oxide in bacteria: Synthesis and consumption. Biochim. Biophys. Acta, 141, 456–474.

    Google Scholar 

  • Weeg-Aerssens, E., Wu, W. S., Ye, R. W., Tiedje, J. M., and Chang, C. K. (1991). Purification of cytochrome cd1 nitrite reductase from Pseudomonas stutzeri JM300 and reconstitution with native and synthetic heme d1. J. Biol. Chem., 266, 7496–7502.

    CAS  PubMed  Google Scholar 

  • Whittaker, M., Bergmann, D., Arciero, D., and Hooper, A. B. (2000). Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim. Biophys. Acta, 1459, 346–355.

    CAS  PubMed  Google Scholar 

  • Wikstrom, M. (2000a). Mechanism of proton translocation by cytochrome c oxidase: A new four-stroke histidine cycle. Biochim. Biophys. Acta, 1458, 188–198.

    CAS  PubMed  Google Scholar 

  • Wikstrom, M. (2000b). Proton translocation by cytochrome c oxidase: A rejoinder to recent criticism. Biochemistry, 39, 3515–3519.

    Article  CAS  PubMed  Google Scholar 

  • Williams, P. A., Fulop, V., Garman, E. F., Saunders, N. F. W., Ferguson, S. J., and Hajdu, J. (1997). Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature, 389, 406–412.

    Article  CAS  PubMed  Google Scholar 

  • Williams, R., Bell, A., Sims, G., and Busby, S. (1991). The role of two surface exposed loops in transcription activation by the Escherichia coli CRP and FNR proteins. Nucleic Acids Res., 19, 6705–6712.

    CAS  PubMed  Google Scholar 

  • Williams, R. M., Rhodius, V. A., Bell, A. I., Kolb, A., and Bushy, S. J. W. (1996). Orientation of functional activating regions in the Escherichia coli CRP protein during transcription activation at class II promoters. Nucleic Acids Res., 24, 1112–1118.

    CAS  PubMed  Google Scholar 

  • Williams, R. S. B., Davis, M. A., and Howlett, B. J. (1995). The nitrate and nitrite reductase-encoding genes of Leptosphaeria maculans are closely linked and transcribed in the same direction. Gene, 158, 153–154.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, W. C., Gonzalez, G., Wittenberg, J. B., Hille, R., Dakappagari, N., Jacob, A., et al. (1996). Nonsteric factors dominate binding of nitric oxide, azide, imidazole, cyanide, and fluoride to the rhizobial heme-based oxygen sensor FixL. Chem. Biol., 3, 841–850.

    Article  CAS  PubMed  Google Scholar 

  • Wood, N. J., Alizadeh, T., Bennett, S., Pearce, J., Ferguson, S. J., Richardson, D. J., and Moir, J. W. (2001). Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J. Bacteriol., 183, 3606–3613.

    Article  CAS  PubMed  Google Scholar 

  • Wood, N. J., Alizadeh, T., Richardson, D. J., Ferguson, S. J., and Moir, J. W. (2002). Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol. Microbiol., 44, 157–170.

    Article  CAS  PubMed  Google Scholar 

  • Wood, P. M. (1978). Periplasmic location of the terminal reductase in nitrite respiration. FEBS Lett., 92, 214–218.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J.-Y., Siegel, L. M., and Kredich, N. M. (1991) High-level Eexpression of Escherichia coli NADPH-sulfite reductase: Requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J. Bacteriol., 173, 325–333.

    CAS  PubMed  Google Scholar 

  • Wu, Q. T., Knowles, R., and Chan, Y. K. (1995). Production and consumption of nitric oxide by denitrifying Flexibacter canadensis. Can. J. Microbiol., 41, 585–591.

    CAS  Google Scholar 

  • Wu, S. Q., Chai, W., Lin, J. T., and Stewart, V. (1999). General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol., 181, 7274–7284.

    CAS  PubMed  Google Scholar 

  • Yamazaki, T., Oyanagi, H., Fujiwara, T., and Fukumori, Y. (1995). Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum. A novel cytochrome cd1 with Fe(II):nitrite oxidoreductase activity. Eur. J. Biochem., 233, 665–671.

    Article  CAS  PubMed  Google Scholar 

  • Ye, R. W., Arunakumari, A., Averill, B. A., and Tiedje, J. M. (1992). Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J. Bacteriol., 174, 2560–2564.

    CAS  PubMed  Google Scholar 

  • Yokoyama, K., Hayashi, N. R., Arai, H., Chung, S. Y., Igarashi, Y., and Kodama, T. (1995). Genes encoding RubisCO in Pseudomonas hydrogenothermophila are followed by a novel cbbQ gene similar to nirQ of the denitrification gene cluster from Pseudomonas species. Gene, 153, 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Zart, D., and Bock, E. (1998). High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch. Microbiol., 169, 282–286.

    Article  CAS  PubMed  Google Scholar 

  • Zart, D., Schmidt, I., and Bock, E. (2000). Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha. Antonie van Leeuwenhoek, 77, 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Zhulin, I. B., Taylor, B. L., and Dixon, R. (1997). PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci., 22, 331–333.

    Article  CAS  PubMed  Google Scholar 

  • Zumft, W. G., and Koerner, H. (1997). Enzyme diversity and mosaic gene organization in denitrification. Antonie van Leeuwenhoek, 71, 43–58.

    Article  CAS  PubMed  Google Scholar 

  • Zumft, W. G. (1993). The biological role of nitric oxide in bacteria. Arch. Microbiol., 160, 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61, 533–616.

    CAS  PubMed  Google Scholar 

  • Zumft, W. G. (2002). Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J Mol Microbiol. Biotechnol., 4, 277–286.

    CAS  PubMed  Google Scholar 

  • Zumft, W. G., Braun, C., and Cuypers, H. (1994). Nitric oxide reductase from Pseudomonas stutzeri-Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur. J. Biochem., 219, 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Zumft, W. G., Gotzmann, D. J., and Kroneck, P. M. (1987). Type 1 blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur. J. Biochem., 168, 301–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Van Spanning, R.J.M., Delgado, M.J., Richardson, D.J. (2005). The Nitrogen Cycle: Denitrification and its Relationship to N2 Fixation. In: Werner, D., Newton, W.E. (eds) Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3544-6_13

Download citation

Publish with us

Policies and ethics