Skip to main content

Mathematical Aspects of Data Assimilation for Atmospheric Chemistry Models

  • Conference paper
Advances in Air Pollution Modeling for Environmental Security

Part of the book series: NATO Science Series ((NAIV,volume 54))

Abstract

This study analyzes some mathematical aspects of data assimilation for atmospheric chemistry models based on variational approaches. Of interest here are the so called adjoint methods which are particularly efficient to mathematically solve the variational problem. Details concerning operator splitting, adjoint and gradient computations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartholy, J., Faragó, I., Havasi, Á., 2001, Splitting Method and its Application in Air Pollution Modeling, Időjárás 105, pp. 39–58.

    Google Scholar 

  • Botchev, M., Faragó, I., and Havasi, Á., 2004, Testing Weighted Splitting Schemes on a One-Column Transport-Chemistry Model, I. Lirkov et al. (Eds.): LSSC 2003, LNCS 2907, pp. 295–302.

    Google Scholar 

  • Dimitriu, G., 1999, Parameter Identification for Some Classes of Nonlinear Systems, PhD thesis, (in Romanian).

    Google Scholar 

  • Dimov, I., Faragó, I., Havasi, Á., and Zlatev, Z., 2001, L-Commutativity of the Operators in Splitting Methods for Air Pollution Models, Annales Univ. Sci. Sec. Math. 44, pp. 127–148.

    Google Scholar 

  • Daescu, D., Carmichael, G. R., and Sandu, A., 2000, Adjoint Implementation of Rosenbrock Methods Applied to Variational Data Assimilation Problems, J. Comput. Phys. 165, No. 2, pp. 496–510.

    Article  CAS  Google Scholar 

  • Damian-Iordache, V., and Sandu, A., 1995, KPP-A Symbolic Preprocessor for Chemistry Kinetics — User’s guide. Tech. Rep., Univ. of Iowa, Department of Mathematics.

    Google Scholar 

  • Giering, R., and Kaminski, T., 1998, Recipes for Adjoint Code Construction, ACM Trans. Math. Software.

    Google Scholar 

  • Lang, J., and Verwer, J., 2001, ROS3P — An Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems, BIT 41, No. 4, pp. 731–738.

    Article  Google Scholar 

  • Marchuk, G. I., Agoshkov, I. V., and Shutyaev, P. V., 1996, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, CRC Press.

    Google Scholar 

  • Navon, I. M., 1998, Practical and Theoretical Aspects of Adjoint Parameter Estimation and Identifiability in Meteorology and Oceanography, Dynamics of Atmospheres and Oceans. Special Issue in honor of Richard Pfeffer 27, No. 1–4, pp. 55–79.

    Google Scholar 

  • Ostromsky, T., and Zlatev, Z., 2003, Flexible Two-Level Parallel Implementations of a Large Air Pollution Model, I. Dimov et al. (Eds.): NMA 2002, LNCS 2542, pp. 545–554.

    Google Scholar 

  • Rostaing, N., Dalmas, S., and Galligo, A., 1993, Automatic Differentiation in Odysee. Tellus 45, pp. 558–568.

    Google Scholar 

  • Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., and Carmichael, G. R., 1997, Benchmarking Stiff ODE Solvers for Atmospheric Chemistry Problems II: Rosenbrock Solvers, Atmos. Environ. 31, pp. 3459–3472.

    CAS  Google Scholar 

  • Silva, P. S. D., Navon, I. M., and Landau, L., 2002, Adjoint Formalism and the Configuration Retrieval of an Evolutionary System Represented by Burgers’ Equations, Pre-print.

    Google Scholar 

  • Strang, G., 1968, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis 5, pp. 506–517.

    Article  Google Scholar 

  • Talagrand, O., and Courtier, P., 1987, Variational Assimilation of Meteorological Observations with the Adjoint of the Vorticity Equations. Part I. Theory. Q. J. R. Meteorol. Soc. 113, pp. 1311–1328.

    Article  Google Scholar 

  • Wang, K. Y., Lary, D. J., Shallcross, D. E., Hall, S. M., and Pyle, J. A., 2001, A Review on the Use of the Adjoint Method in Four-Dimensional Atmospheric-Chemistry Data Assimilation. Q.J.R. Meteorol. Soc. 127(576) Part B, pp. 2181–2204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Dimitriu, G., Cuciureanu, R. (2005). Mathematical Aspects of Data Assimilation for Atmospheric Chemistry Models. In: Faragó, I., Georgiev, K., Havasi, Á. (eds) Advances in Air Pollution Modeling for Environmental Security. NATO Science Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3351-6_9

Download citation

Publish with us

Policies and ethics