Skip to main content
Log in

Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry is presented. The variational approach allows expanding the class of concerned problems for a complex study of different-scale physical and chemical processes using the methods of direct and inverse modeling for these purposes. A technology of constructing consistent mathematical models and methods of their numerical implementation based on the variational principle in the weak constraint statement is described. Solutions of local and global adjoint problems are of great importance for constructing the algorithms of direct and inverse modeling. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Marchuk, Mathematical Modeling in the Problem of Environment (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  2. G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  3. V. V. Penenko, Methods for Numerical Modeling of Atmospheric Processes (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  4. V. V. Penenko and A. E. Aloyan, Models and Methods for Environmental Protection Problems (Nauka, Novosibirsk, 1985).

    Google Scholar 

  5. A. E. Aloyan, Modeling of the Dynamics and Kinetics of Gaseous Compounds and Aerosols (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  6. V. V. Penenko, “On the conception of environmental prediction,” Opt. Atmos. Okeana 23(6), 432–438 (2010).

    Google Scholar 

  7. V. V. Penenko, A. Baklanov, E. Tsvetova, and A. Mahura, “Direct and inverse problems in a variational concept of environmental modeling,” Pure Appl. Geophys. 169, 447–465 (2012).

    Article  Google Scholar 

  8. O. M. Belotserkovskii, V. A. Andryushchenko, and Yu. D. Shevelev, Dynamics of Spatial Vortex Currents in an inhomogeneous atmosphere (Yanus-K, Moscow, 2000) [in Russian].

    Google Scholar 

  9. V. V. Penenko and N. N. Obraztsov, “A variational initialization method for the fields of meteorological elements,” Meteorol. Gidrol., No. 11, 3–16 (1976).

    Google Scholar 

  10. L. Collatz, Funktionalanalysis und Numerische Mathematik (Functional Analysis and Computational Mathematics (Springer, Berlin, 1964; Mir, Moscow, 1969).

    Book  Google Scholar 

  11. V. V. Penenko and E. A. Tsvetova, “Optimal prediction of natural processes with an estimate of uncertainty,” Prikl. Mekh. Tekh. Fiz., No. 2, 156–166 (2009).

    Google Scholar 

  12. V. V. Penenko, “Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment,” Numer. Anal. Appl. 2(4), 341–351 (2009).

    Article  Google Scholar 

  13. O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  14. G. I. Marchuk, Methods of Computational Mathematics (Lan’, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  15. A. A. Samarskii and P. N. Vabishchevich, Additive Schemes for Problems of Mathematical Physics (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  16. V. Penenko and E. Tsvetova, “Discrete-analytical methods for the implementation of variational principles in environmental applications,” J. Comput. Appl. Math. 226, 319–330 (2009).

    Article  Google Scholar 

  17. V. V. Penenko and E. A. Tsvetova, “Variational methods of constructing monotone approximations for atmospheric chemistry models,” Numer. Anal. Appl. 6(3), 210–220 (2013).

    Article  Google Scholar 

  18. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko, “Variational approach and Euler’s integrating factors for environmental studies,” Comput. Math. Appl. 67(12), 2240–2256 (2014).

    Article  Google Scholar 

  19. J.-L. Lions, Contrøle optimal de systèmes gouvernes par des équations aux dérivées partielles (Optimal Control of Systems Governed by Partial Differential Equations), (Gauther-Villars, Paris, 1968; Mir, Moscow, 1972).

    Google Scholar 

  20. V. V. Penenko, “Computational aspects of simulation of the dynamics of atmospheric processes and assessment of the effect of various factors on atmospheric dynamics,” in Some Problems of Computational and Applied Mathematics (Nauka, Novosibirsk, 1975), pp. 61–77 [in Russian].

    Google Scholar 

  21. G. I. Marchuk and V. V. Penenko, “A sensitivity study of discrete models of atmospheric and oceanic dynamics,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 15(11), 1123–1131 (1979).

    Google Scholar 

  22. G. I. Marchuk and V. V. Penenko, “Application of perturbation theory to problems of simulation of atmospheric processes,” in Monsoon Dynamics, Ed. by J. Lighthill and R. Pearce (Cambridge University Press, Cambridge, 1981), pp. 639–655.

    Chapter  Google Scholar 

  23. G. I. Marchuk and V. V. Penenko, “Some applications of optimization methods to environmental problems,” in Computational Methods in Applied Mathematics (Nauka, Novosibirsk, 1982), pp. 5–22 [in Russian].

    Google Scholar 

  24. V. Penenko, A. Baklanov, and E. Tsvetova, “Methods of sensitivity theory and inverse modeling for estimation of source parameters,” Future Gener. Comput. Syst. 18, 661–671 (2002).

    Article  Google Scholar 

  25. G. I. Marchuk, “On the theory of biorthogonal expansions of the fields of meteorological variables,” Dokl. Akad. Nauk 179(4), 832–835 (1968).

    Google Scholar 

  26. T. N. Palmer, R. Gelaro, J. Barkmeijer, and R. Buizza, “Singular vectors, metrics, and adaptive observations,” J. Atmos. Sci. 55, 633–653 (1988).

    Article  Google Scholar 

  27. R. W. Preisendorfer, Principle Component Analysis in Meteorology and Oceanography (Elsevier, Amsterdam, 1988).

    Google Scholar 

  28. V. Penenko and E. Tsvetova, “Orthogonal decomposition methods for inclusion of climatic data into environmental studies,” Ecol. Modell. 217, 279–291 (2008).

    Article  Google Scholar 

  29. S. K. Godunov, A. G. Antonov, O. P. Kirilyuk, and V. I. Kostin, Guaranteed Accuracy for Solutions of Linear Equations in Euclidean Spaces (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  30. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  31. V. V. Penenko and E. A. Tsvetova, “Methods of scale separation and variational problems for the study of climate system variations and ecologic risk assesment,” in Turbulence, Dynamics of the Atmosphere and Climate. Proc. of the Int. Conf. Dedicated to the Memory of Academician A. M. Obukhov (GEOS, Moscow, 2014), pp. 292–297 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Penenko.

Additional information

Original Russian Text © V.V. Penenko, E.A. Tsvetova, A.V. Penenko, 2015, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2015, Vol. 51, No. 3, pp. 358–367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penenko, V.V., Tsvetova, E.A. & Penenko, A.V. Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry. Izv. Atmos. Ocean. Phys. 51, 311–319 (2015). https://doi.org/10.1134/S0001433815030093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815030093

Keywords

Navigation