Skip to main content

The Symbiontic Nature of Metabolic Evolution

  • Chapter
Current Themes in Theoretical Biology

Abstract

We discuss evolutionary aspects of metabolism, right from the beginning of life to the present day at various levels of organization, thereby including quantitative aspects on the basis of the Dynamic Energy Budget (DEB) theory. We propose a scheme for the evolution of the central metabolism with archaeal as well as eubacterial roots. After an extended initial phase of prokaryotic diversification, cycles of exchange of metabolites between partners in a symbiosis, integration of partners into new individuals and new specializations led to forms of symbiosis of various intensity ranging from loosely living together in species aggregates to several forms of endosymbiosis. While the prokaryotic metabolism evolved into a considerable chemical diversity, the eukaryotic metabolic design remained qualitatively the same but shows a large organizational diversity. Homeostasis of biomass evolved, introducing stoichiometric constraints on production and excretion of products that can be re-utilized; carbohydrates and inorganic nitrogen being the most important ones. This stimulates the formation of symbioses, since most are based on syntrophy, which is probably the basis of the huge biodiversity. A remarkable property of DEB theory for metabolic organization is that organisms of two species that exchange products, and thereby follow the DEB rules, can together follow a symbiogenic route such that the symbiosis behaves as a new organism that itself follows the DEB rules. This property of the reserve dynamics in the DEB theory also explains a possible evolutionary route to homeostasis. The reserve dynamics in DEB theory also plays a key role in linking the kinetics of metabolic pathways to needs of metabolites at the cellular level. Moreover, reserve kinetics, in combination with other DEB elements, explains how metabolic performance depends on body size and why such relationships work out differently within and between species. Apart from the key role of reserves, the dynamic interaction between surface areas and volumes is a basic feature of the DEB theory at all levels of organization (molecules, individuals, ecosystems). The explicit mass and energy balances of the DEB theory facilitates ecosystem modelling as it depends on nutrient exchange. The theoretical interest in this topic concerns the huge range in space-time scales that is involved in understanding the significance of the actions of life within the context of metabolic organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., A. Johnson, J. Leweis, M. Raff, K. Robert and P. Walter (2002). Molecular Biology of the Cell. Garland Science, New York.

    Google Scholar 

  • Amend, J. P. and E. L. Shock (2001). Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiological Reviews 25: 175–243.

    Google Scholar 

  • Anbar, A. D. and A. H. Knoll (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297: 1137–1142.

    Article  Google Scholar 

  • Andersson, J. O. and A. J. Roger (2002). A cyanobacterial gene in nonphotosybthetic protests — an early chloroplast acquisition in eukaryotes? Current Biology 12: 115–119.

    Article  Google Scholar 

  • Andersson, S. G. E., A. Zomorodipour, J. O. Andersson, T. Sicheritz-Pontén, U. C. M. Alsmark, R.M. Podowski, A. K. Nälund, A.-S. Eriksson, H. H. Winkler and C. G. Kurland (1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–143.

    Article  Google Scholar 

  • Bakker, B. (1998). Control and Regulation of Glycolysis in Trypanosoma brucei. PhD Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Baltscheffsky, H. (1996). Energy conversion leading to the origin and early evolution of life: did inorganic pyrophosphate precede adenosine triphosphate? In: Baltscheffsky, H. (Ed.). Origin and Evolution of Biological Energy Conversion. VCH Publishers, Cambridge. pp. 1–9.

    Google Scholar 

  • Baltscheffsky, M., A. Schultz and H. Baltscheffsky (1999). H+-P pases: a tightly membrane-bound family. FEBS Letters 457: 527–533.

    Article  Google Scholar 

  • Barth, F. G. (1991). Insects and Flowers. Princeton University Press, Princeton.

    Google Scholar 

  • Bengtson, S. (1994). Early Life on Earth. Columbia University Press, New York.

    Google Scholar 

  • Bernard, C, A. G. B. Simpson and D. J. Patterson (2000). Some free-living flagellates (Protista). from anoxic habitatats. Ophelia 52: 113–142.

    Google Scholar 

  • Bigay, J., P. Guonon, S. Robineau and B. Antonny (2003). Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer urvature. Nature 426: 563–566.

    Article  Google Scholar 

  • Birky, C. W. (2001). The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annual Review of Genetics 35: 125–148.

    Article  Google Scholar 

  • Bjerrum, C. J. and D. E. Canfield (2002). Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417: 159–162.

    Article  Google Scholar 

  • Blankenship, R. E. and H. Hartman (1992). Origin and early evolution of photosynthesis. Photosynthesis Research 33: 91–111.

    Article  Google Scholar 

  • Blankenship, R. E. and H. Hartman (1998). The origin and evolution of oxygenic photosynthesis. Trends in Biochemical Sciences 23: 94–97.

    Article  Google Scholar 

  • Boyce, A. J., M. L. Coleman and M. J. Russell (1983). Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature 306: 545–550.

    Article  Google Scholar 

  • Brandt, B. W. (2002). Realistic Characterizations of Biodegradation. PhD Thesis. Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Brandt, B. W. and S. A. L. M. Kooijman (2000). Two parameters account for the flocculated growth of microbes in biodegradation assays. Biotechnology and Bioengineering 70: 677–684.

    Article  Google Scholar 

  • Brandt, B. W., I. M. M. van Leeuwen and S. A. L. M. Kooijman (2003). A general model for multiple substrate biodegradation. Application to co-metabolism of non structurally analogous compounds. Water Research 37: 4843–4854.

    Article  Google Scholar 

  • Brocks, J. J., G. A. Logan, G. A. Logan, R. Buick and R. E. Summons (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036.

    Article  Google Scholar 

  • Cairns-Smith, A. G., A. J. Hall and M. J. Russell (1992). Mineral theories of the origin of life and an iron sulphide example. Origins Life and Evolution of the Biosphere 22: 161–180.

    Article  Google Scholar 

  • Cavalier-Smith, T. A. (1987a). The simulataneous origin of mitochondria, chloroplasts and microbodies. Annals of the New York Academy of Sciences 503: 55–71.

    Google Scholar 

  • Cavalier-Smith, T. A. (1987b). The origin of cells, a symbiosis between genes, catalysts and membranes. Cold Spring Harbor Symposia on Quantitative Biology 52: 805–824.

    Google Scholar 

  • Cavalier-Smith, T. A. (1998). A revised six-kingdom system of life. Biological Reviews 73: 203–266.

    Google Scholar 

  • Cavalier-Smith, T. A. (2000). Membrane heredity and early chloroplast evolution. Trends in Plant Sciences 5: 174–182.

    Article  Google Scholar 

  • Cavalier-Smith, T. A. (2002a). Chloroplast evolution: Secondary symbiogenesis and multiple losses. Current Biology 12: R62–64.

    Article  Google Scholar 

  • Cavalier-Smith, T. A. (2002b). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology 52: 297–354.

    Google Scholar 

  • Chela-Flores, J. (1998). First step in eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure. Origins of Life and Evolution of the Biosphere 28: 215–225.

    Article  Google Scholar 

  • Dalsgaard, T., D. E. Canfield, J. Petersen, B. Thamdrup and J. Acuna-Gonzalez (2003). N-2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422: 606–608.

    Article  Google Scholar 

  • de Duve, C. (1984). A Guided Tour of the Living Cell. Scientific American Library, New York.

    Google Scholar 

  • Deamer, D. W. and R. M. Pashley (1989). Amphiphilic components of the Murchison carbonaceous chondrite; surface properties and membrane formation. Origins of Life and Evolution of the Biosphere 19: 21–38.

    Article  Google Scholar 

  • DeLuca, T. H., O. Zackrisson, M.-C. Nilsson and A. Sellstedt (2002). Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419: 917–920.

    Article  Google Scholar 

  • Delwiche, C. F. (1999). Tracing the thread of plastid diversity through the tapestry of life. American Naturalist 154: S164–S177.

    Article  Google Scholar 

  • Dennis, C. (2003). Close encounters of the jelly kind. Nature 426: 12–14.

    Article  Google Scholar 

  • Derelle, E., C. Ferraz, P. Lagoda, S. Eychenié, R. Cooke, F. Regad, X. Sabau, C. Courties, M. Delseny, J. Demaille, A. Picard and H. Moreau (2002). DNA libraries for sequencing the genome of Ostreococcus tauri (Chlorophyta, Prasinophyceae): the smallest free-living eukaryotic cell. Journal of Phycology 38: 1150–1156.

    Article  Google Scholar 

  • Dillon, J. G. and R. W. Castenholz (1999). Scytonemin, a cyanobacterial sheath pigment, protects against UVC Radiation: implications for early photosynthetic life. Journal of Phycology 35: 673–681.

    Article  Google Scholar 

  • Dismukes, G. C., V. V. Klimov, S. V. Baranov, Yu. N. Kozlov, J. DasGupta and A. Tyryshkin (2001). The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proceedings of the National Academy of Sciences of the USA 98: 2170–2175.

    Article  Google Scholar 

  • Dixon, P. S. (1973). Biology of the Rhodophyta. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science 284: 2124–2128.

    Article  Google Scholar 

  • Dubilier, N., C. Mulders, T. Felderman, D. de Beer, A. Pernthaler, M. Klein, M. Wagner, C. Erséus, F. Thiermann, J. Krieger, O. Giere and R. Amann (2001). Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411: 298–302.

    Article  Google Scholar 

  • Dworkin, M. (1985). Developmental Biology of the Bacteria. Benjamin-Cummings Publishing Company, California.

    Google Scholar 

  • Elser, J. J. (2004). Biological stoichiometry: a theoretical framework connecting ecosystem ecology, evolution, and biochemistry for application in astrobiology. International Journal of Astrobiology: to appear.

    Google Scholar 

  • Embley, T. M. and R. P. Hirt (1998). Early branching eukaryotes? Current Opinion in Genetics and Development 8: 624–629.

    Article  Google Scholar 

  • Fenchel, T. (2002). Origin and Early Evolution of Life. Oxford University Press, Oxford.

    Google Scholar 

  • Fenchel, T. and B. L. Finlay (1995). Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford.

    Google Scholar 

  • Forterre, P. and H. Philippe (1999). Where is the root of the universal tree of life? BioEssays 21: 871–879.

    Article  Google Scholar 

  • Forterre, P., A. Bergerat, P. Lopez-Garvia (1996). The unique DNA topology and DNA topoisomerase of hyperthermophilic archaea. FEMS Microbiology Reviews 18: 237–248.

    Google Scholar 

  • Fuhrman, J. (2003). Genome sequences from the sea. Nature 424: 1001–1002.

    Article  Google Scholar 

  • Gruenberg, J. (2001). The endocytic pathway: a mosaic of domains. Nature Reviews 2: 721–730.

    Article  Google Scholar 

  • Guerrero, R. (1991). Predation as prerequisite to organelle origin: Daptobacter as example. In: Margulis, L. and R. Fester (Eds). Symbiosis as a Source of Evolutionary Innovation. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Gupta, R. S. (1998). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbiology and Molecular Biology Reviews 62: 1435–1491.

    Google Scholar 

  • Hartman, H. (1975). Speculations on the origin and evolution of metabolism. Journal of Molecular Evolution 4: 359–370.

    Article  Google Scholar 

  • Hartman, H. (1998). Photosythesis and the origin of life. Origins of Life and the Evolution of the Biosphere 28: 515–521.

    Article  Google Scholar 

  • Heinrich, B. (1993). The Hot-Blooded Insects. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Heinrich, R. and S. Schuster (1996). The Regulation of Cellular Systems. Chapman and Hall, New York.

    Google Scholar 

  • Hendrix, R. W., M. C. Smith, R. N. Burns, M. E. Ford and G. F. Hatfull (1999). Evolutionary relationships among diverse bacteriophages: All the world's phage. Proceedings of the National Academy of Sciences of the USA 96: 2192–2197.

    Article  Google Scholar 

  • Hengeveld, R. and M. A. Fedonkin (2004). Causes and consequences of eukaryotization through mutualistic endosymbiosis. Acta Biotheoretica 52: 105–154.

    Article  Google Scholar 

  • Hibbet, D. S. (2002). When good relationships go bad. Nature 419: 345–346.

    Article  Google Scholar 

  • Holland, H. D. (1994). Early proterozoic atmospheric change. In: Bengtson, S. (Ed.). Early life on earth. Columbia University Press, New York: pp 237–244.

    Google Scholar 

  • Hope, A. B. and N. A. Walker (1975). The Physiology of Giant Algal Cells. Cambridge University Press, Cambridge.

    Google Scholar 

  • Huber, H., M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer and K. O. Stetter (2002). A new phylum of Archaea represented by nanosized hyperthermophilic symbiont. Nature 417: 63–67.

    Article  Google Scholar 

  • Hugenholtz, J. and L. G. Ljungdahl (1990). Metabolism and energy generation in homoacetogenic Clostridia. FEMS Microbiology Reviews 87: 383–389.

    Google Scholar 

  • Kandler, O. (1998). The early diversification of life and the origin of the three domains: a proposal. In: Wiegel, J. and M. W. W. Adams (Eds). Thermophiles: The keys to molecular evolution and the origin of life. Taylor and Francis, Washington. pp 19–31.

    Google Scholar 

  • Kasting, J. F. (2001). Earth's early atmosphere. Science 259: 920–925.

    Google Scholar 

  • Kates, M. (1979). The phytanyl ether-linked polar lipids and isopreniod neutral lipids of extremely halophilic bacteria. Lipids 15: 301–342.

    Google Scholar 

  • Keefe, A. D., S. L. Miller and G. Bada (1995). Investigation of the prebiotic synthesis of amino acids and RNA bases from CO2 using FeS/H2S as a reducing agent. Proceedings of the National Academy of Sciences of the USA 92: 11904–11906.

    Google Scholar 

  • Keeling, P. J. (1998). A kingdom's progress: Archaezoa and the origin of eukaryotes. BioEssays 20: 87–95.

    Article  Google Scholar 

  • Kirkpatrick, M. (Ed.). (1993). The evolution of Haploid-Diploid life cycles. Lectures on Mathematics in the Life Sciences 25. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Knoll, A. H. (2003). Life on a Young Planet; The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton.

    Google Scholar 

  • Koga, Y., T. Kyuragi, M. Nishhihara and N. Sone (1998). Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipids with enantiomeric glycerophosphate backbones caused the separation of the two lines of decent. Journal of Molecular Evolution 46: 54–63.

    Article  Google Scholar 

  • Kooi, B. W. and S. A. L. M. Kooijman (2000). Invading species can stabilize simple trophic systems. Ecological Modelling 133: 57–72.

    Article  Google Scholar 

  • Kooi, B. W., L. D. J. Kuijper and S. A. L. M. Kooijman (2004). Consequences of symbiosis on food web dynamics in an open system. Journal of Mathematical Biology: to appear.

    Google Scholar 

  • Kooijman, S. A. L. M. (1986). Energy budgets can explain body size relations. Journal of Theoretical Biology 121: 269–282.

    Google Scholar 

  • Kooijman, S. A. L. M. (1998). The synthesizing unit as model for the stoichiometric fusion and branching of metabolic fluxes. Biophysical Chemistry 73: 179–188.

    Article  Google Scholar 

  • Kooijman, S. A. L. M. (2000). Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kooijman, S. A. L. M. (2001). Quantitative aspects of metabolic organization; a discussion of concepts. Philosophical Transactions of the Royal Society — Series B 356: 331–349.

    Article  Google Scholar 

  • Kooijman, S. A. L. M. (2004). On the coevolution of life and its environment. In: Miller, J., P. J. Boston, S. H. Schneider and E. Crist (Eds). Scientists on Gaia: 2000. MIT Press, Cambridge, Massachusetts, Chapter 30, to appear.

    Google Scholar 

  • Kooijman, S. A. L. M. and L. Segel (2003). How growth affects the fate of metabolites. (to appear).

    Google Scholar 

  • Kooijman, S. A. L. M., T. R. Andersen and B. W. Kooi (2004). Dynamic energy budget representations of stoichiometric constraints on population dynamics. Ecology 85: 1230–1243.

    Google Scholar 

  • Kooijman, S. A. L. M., P. Auger, J. C. Poggiale and B. W. Kooi (2003). Quantitative steps in symbiogenesis and the evolution of homeostasis. Biological Reviews 78: 435–463.

    Article  Google Scholar 

  • Kroon, D., R. D. Norris and A. Klaus (2001). Western North Atlantic Palaeogene and Cretaceous Palaeoceanography, Geological Society Special Publication 183: 1–319.

    Google Scholar 

  • Kuijper, L. D. J., T. R. Anderson and S. A. L. M. Kooijman (2003). C and N gross efficiencies of copepod egg production studies using a Dynamic Energy Budget model. Journal of Plankton Research 26: 213–226.

    Article  Google Scholar 

  • Kurland, C. G. and S. G. E. Andersson (2000). Origin and evolution of the mitochondrial proteome. Microbiology and Molecular Biology Reviews 64: 786–820.

    Article  Google Scholar 

  • Lane, N. (2002). Oxygen, the Molecule that made the World. Oxford University Press, Oxford.

    Google Scholar 

  • Lee, J. J., G. F. Leedale and P. Bradbury (2000). An Illustrated Guide to the Protozoa. Society of Protozoologists, Lawrence, Kansas.

    Google Scholar 

  • Leigh, R. A. and D. Sanders (1997). The Plant Vacuole. Academic Press, San Diego.

    Google Scholar 

  • Lengeler, J. W., G. Drews and H. G. Schlegel (1999). Biology of the Prokaryotes. Thieme Verlag, Stuttgart.

    Google Scholar 

  • Lindahl, P. A. and B. Chang (2001). The evolution of acetyl-CoA synthase. Origins of Life and Evolution of the Biosphere 31: 403–434.

    Article  Google Scholar 

  • Ljungdahl, L. G. (1994). The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Drake, H. L. (Ed.). Acetogenesis. Chapman and Hall, New York. pp 63–87.

    Google Scholar 

  • Madigan, M. T., J. M. Martinko and J. Parker (2000). Brock Biology of Micro-organisms. Prentice Hall International, New Jersey.

    Google Scholar 

  • Margulis, L. (1970). Origins of Eukaryotic Cells. Freeman, San Francisco.

    Google Scholar 

  • Martin, M. M. (1987). Invertebrate-Microbial Interactions; Ingested Fungal Enzymes in Arthropod Biology. Comstock Publishers & Associates, Ithaca.

    Google Scholar 

  • Martin, W. and M. Muller (1998). The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41.

    Article  Google Scholar 

  • Martin, W. and M. Russell (2003). On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions of the Royal Society — Series B 358: 59–85.

    Article  Google Scholar 

  • Martin, W. and C. Schnarrenberger (1997). The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Current Genetics 32: 1–18.

    Article  Google Scholar 

  • Martin, W., T. Rujan, E. Richly, A. Hansen, S. Cornelsen, T. Lins, D. Leister, B. Stoebe, M. Hasegawa and D. Penny (2002). Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of the USA 99: 12246–12251.

    Article  Google Scholar 

  • McFadden, G. I. (2001). Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology 37: 951–959.

    Article  Google Scholar 

  • Meléndez-Hevia, E. (1990). The game of the pentose phosphate cycle: a mathematical approach to study the optimization in design of metabolic pathways during evolution. Biomedica Biochemica Acta 49: 903–916.

    Google Scholar 

  • Meléndez-Hevia, E. and A. Isidoro (1985). The game of the pentose phosphate cycle. Journal of Theoretical Biology 117: 251–263.

    Google Scholar 

  • Michaelis, W., R. Seifert, K. Nauhaus, T. Treude, V. Thiel, M. Blumenberg, K. Knittel, A. Gieseke, K. Peterknecht, T. Pape, A. Boetius, R. Amann, B. B. Jøgensen, F. Widdel, J. Peckmann, N. V. Pimenov and M. B. Gulin (2002). Microbial reefs in the Black Sea fuelled by anaerobic oxidation of methane. Science 297: 1013–1015.

    Article  Google Scholar 

  • Misra, J. K. and R. W. Lichtwardt (2000). Illustrated Genera of Trichomycetes; Fungal Symbionts of Insects and Other Arthropods. Science Publishers, Enfield, NH.

    Google Scholar 

  • Moore, D. (1998). Fungal Morphogenesis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Morowitz, H. J., J. D. Kostelnik, J. Yang and G. D. Cody (2000). The origin of intermediary metabolism. Proceedings of the National Academy of Sciences of the USA 97: 7704–7708.

    Article  Google Scholar 

  • Nisbet, E. G. and C. M. R. Fowler (1999). Archaean metabolic evolution of microbial mate. Proceedings of the Royal Society of London — B — Biological Sciences 266: 2375–2382.

    Article  Google Scholar 

  • Nisbet, R. M., E. B. Muller, K. Lika and S. A. L. M. Kooijman (2000). From molecules to ecosystems through Dynamic Energy Budget models. Journal of Animal Ecology 69: 913–926.

    Article  Google Scholar 

  • Norris, V. and D. J. Raine (1998). A fission-fusion origin for life. Origins of Life and Evolution of the Biosphere 28: 523–537.

    Article  Google Scholar 

  • Olsen, G. J. and C. R. Woese (1996). Lessons from an Archaeal genome: what are we learning from Methanococcus jannaschii? Trends in Genetics 12: 377–379.

    Article  Google Scholar 

  • Orgel, L. E. (1998). The origin of life — a review of facts and speculations. Trends in Biochemical Sciences 23: 491–495.

    Article  Google Scholar 

  • Orgel, L. E. (2000). Self-organizing biochemical cycles. Proceedings of the National Academy of Sciences of the USA 97: 12503–12507.

    Article  Google Scholar 

  • Osteryoung, K. W. and J. Nunnari (2003). The division of endosymbiotic organelles. Science 302: 1698–1704.

    Article  Google Scholar 

  • Parniske, M. and J. A. Downie (2003). Lock, keys and symbioses. Nature 425: 569–570.

    Article  Google Scholar 

  • Patterson, D. J. (1999). The diversity of eukaryotes. American Naturalist 154: S96–S124.

    Article  Google Scholar 

  • Proctor, M. and P. Yeo (1973). The Pollination of Flowers. Collins, London.

    Google Scholar 

  • Rai, A. N., E. Soderback and B. Bergman (2000). Cyanobacterium-plant symbioses. New Phytologist 147: 449–481.

    Article  Google Scholar 

  • Raven, J. A. and C. Brownlee (2001). Understanding membrane function. Journal of Phycology 37: 960–967.

    Article  Google Scholar 

  • Raven, J. A. and Z. H. Yin (1998). The past, present and future of nitrogenous compounds in the atmosphere, and their interactions with plants. New Phytologist 139: 205–219.

    Article  Google Scholar 

  • Rickard, D., I. B. Butler and A. Olroyd (2001). A novel iron sulphide switch and its implications for earth and planetary science. Earth and Planetary Science Letters 189: 85–91.

    Article  Google Scholar 

  • Rizzotti, M. (2000). Early Evolution. Birkhauser Verlag, Basel.

    Google Scholar 

  • Roger, A. J. (1999). Reconstructing early events in eukaryotic evolution. American Naturalist 154: S146–S163.

    Article  Google Scholar 

  • Romano, A. H. and T. Conway (1996). Evolution of carbohydrate metabolic pathways. Reseach in Microbiology 147: 448–455.

    Article  Google Scholar 

  • Rothenberg, M. E. and Y.-N. Jan (2003). The hyppo hypothesis. Nature 425: 469–470.

    Article  Google Scholar 

  • Russell, M. J. and A. J. Hall (1997). The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society of London 154: 377–402.

    Google Scholar 

  • Russell, M. J. and A. J. Hall (2002). From geochemistry to biochemistry; chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. The Geochemical News 133/October: 6–12.

    Google Scholar 

  • Russell, M. J., R. M. Daniel, A. J. Hall and J. A. Sherringham (1994). A hydrothermally precipitated catalytic iron sulfide membrane as a first step toward life. Journal of Molecular Evolution 39: 231–243.

    Article  Google Scholar 

  • Ryan, F. (2003). Darwin's Blind Spot. Texere, New York.

    Google Scholar 

  • Schalk, J. (2000). A Study of the Metabolic Pathway of Anaerobic Ammonium Oxidation. PhD Thesis, University of Delft.

    Google Scholar 

  • Schönheit, P. and T. Schafer (1995). Metabolism of hyperthermophiles. World Journal of Microbiology and Biotechnology 11: 26–57.

    Article  Google Scholar 

  • Schoonen, M. A. A., Y. Xu and J. Bebie (1999). Energetics and kinetics of the prebiotic synthesis of simple organic and amino acids with the FeS-H2S/FeS2 redox couple as a reductant. Origins of Life and Evolution of the Biosphere 29: 5–32.

    Article  Google Scholar 

  • Schoonhoven, L. M., T. Jermy and J. J. A. van Loon (1998). Insect-Plant Biology; From Physiology to Ecology. Chapman and Hall, London.

    Google Scholar 

  • Schüßler, A. (2002). Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant and Soil 244: 75–83.

    Article  Google Scholar 

  • Segré, D., D. Ben-Eli, D. W. Deamer and D. Lancet (2001). The lipid world. Origins of Life and Evolution of the Biosphere 31: 119–145.

    Article  Google Scholar 

  • Selig, M., K. B. Xavier, H. Santos and P. Schönheit (1997). Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyper-thermophilic archaea and the bacterium Thermotoga. Archives of Microbiology 167: 217–232.

    Google Scholar 

  • Selosse, M.-A. and F. Le Tacon (1998). The land flora: a phototroph-fungus partnership? Trends in Ecology and Evolution 13: 15–20.

    Article  Google Scholar 

  • Siegel, J. M. (2003). Why we sleep. Scientific American, Nov. 2003: 72–77.

    Google Scholar 

  • Simpson, A. G. B. and A. J. Roger (2002). Eukaryotic evolution: getting to the root of the problem. Current Biology 12: R691–693.

    Article  Google Scholar 

  • Simpson, P. G. and W. B. Whitman (1993). Anabolic pathways in methanogens. In: Ferry, J. G. (Ed.). Methanogenesis. Chapman and Hall, New York. pp 445–472.

    Google Scholar 

  • Smith, D. C. and A. E. Douglas (1987). The Biology of Symbiosis. E. Arnold, Baltimore.

    Google Scholar 

  • Smith, D. J. and G. J. C. Underwood (2000). The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. Journal of Phycology 36: 321–333.

    Article  Google Scholar 

  • Smith, M. L., J. N. Bruhn and J. B. Anderson (1992). The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356: 428–431.

    Article  Google Scholar 

  • Snow, B. and D. Snow (1988). Birds and Berries. Poyser, Calton.

    Google Scholar 

  • Sprent, J. I. (1987). The Ecology of the Nitrogen Cycle. Cambridge University Press, Cambridge.

    Google Scholar 

  • Staley, J. T., M. P. Bryant, N. Pfennig and J. G. Holt (1989). Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Stechmann, A. and T. Cavalier-Smith (2002). Rooting the eukaryote tree by using a derived gene fusion. Science 297: 89–91.

    Article  Google Scholar 

  • Stracke, S., C. Kistner, S. Yoshida, L. Mulder, S. Sato, T. Kaneko, S. Tabata, N. Sandal, J. Stougaard, K. Szczyglowski and M. Parniske (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis Nature 417: 959–962.

    Google Scholar 

  • Stryer, L. (1988). Biochemistry. W. H. Freeman and Co., New York.

    Google Scholar 

  • Sullivan, M. B., J. B. Waterbury and S. W. Chisholm (2003). Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047–1050.

    Article  Google Scholar 

  • Taylor, P., T. E. Rummery and D. G. Owen (1979). Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160°C. Journal of Inorganic and Nuclear Chemistry 41: 1683–1687.

    Article  Google Scholar 

  • Tielens, A. G. M., C. Rotte, J. J. van Hellemond and W. Martin (2002). Mitochondria as we don't know them. Trends in Biochemical Sciences 27: 564–572.

    Article  Google Scholar 

  • van den Berg, H. A. (1998). Multiple Nutrient Limitation in Microbial Ecosystems. PhD Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • van den Ent, F., L. A. Amos and J. Lowe (2001). Prokaryotic origin of the actin cytoskeleton. Nature 413: 39–44.

    Article  Google Scholar 

  • van den Hoek, C., D. G. Mann and H. M. Jahn (1995). Algae; An Introduction to Phycology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Van Dover, C. L. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton.

    Google Scholar 

  • van Leeuwen, I. M. M. and C. Zonneveld (2001). From exposure to effect: a comparison of modeling approaches to chemical carcinogenesis. Mutations Research 489: 17–45.

    Article  Google Scholar 

  • van Leeuwen, I. M. M., F. D. L. Kelpin and S. A. L. M. Kooijman (2002). A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontology 3: 373–381.

    Article  Google Scholar 

  • van Wensum, J. (1992). Isopods and Pollutants in Decomposing Leaf Litter. PhD Thesis, Vrije Universeit, Amsterdam.

    Google Scholar 

  • Vánky, K. (1987). Illustrated Genera of Smut Fungi. Cryptogamic Studies Volume 1. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Von Dohlen, C. D., S. Kohler, S. T. Alsop and W. R. McManus (2001). Mealybug β — proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412: 433–436.

    Article  Google Scholar 

  • Vrede, T. J., D. Dobberfuhl, S. A. L. M. Kooijman and J. J. Elser (2004). The stoichiometry of production — fundamental connections among organism C:N:P stoichiometry, macromolecular composition and growth rate. Ecology 85: 1217–1229.

    Google Scholar 

  • Wächtershäuser, G. (1988). Pyrite formation, the first energy source for life: A hypothesis. Systematic Applied Microbiology 10: 207–210.

    Google Scholar 

  • Wächtershäuser, G. (1990). Evolution of the 1st metabolic cycles. Proceedings of the National Academy of Sciences of the USA 87: 200–204.

    Google Scholar 

  • Waddell, T. G., P. Repovic, E. Melendez-Hevia, R. Heinrich and F. Montero (1997). Optimization of glycolysis: A new look at the efficiency of energy coupling. Biochemical Education 25: 204–205.

    Article  Google Scholar 

  • Woese, C. R. (1979). A proposal concerning the origin of life on the planet earth. Journal of Molecular Evolution 12: 95–100.

    Article  Google Scholar 

  • Woese, C. R. (2002). On the evolution of cells. Proceedings of the National Academy of Sciences of the USA 99: 8742–8747.

    Article  Google Scholar 

  • Wood, R. (1999). Reef Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Xiong, J., W. M. Fisher, K. Inoue, M. Nakahara and C. E. Bauer (2000). Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730.

    Article  Google Scholar 

  • Zachos, J. C., M. W. Wara, S. Bohaty, M. L. Delaney, M. R. Petrizzo, A. Brill, T. J. Bralower and I. Premoli-Silva (2003). A transient rise in tropical sea surface temperature during the Paeocene-Eocene thermal maximum. Science 302: 1551–1554.

    Article  Google Scholar 

  • Zubay, G. (2000). Origins of Life on Earth and in the Cosmos. Academic Press, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Kooijman, S.A.L.M., Hengeveld, R. (2005). The Symbiontic Nature of Metabolic Evolution. In: Reydon, T.A., Hemerik, L. (eds) Current Themes in Theoretical Biology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2904-7_7

Download citation

Publish with us

Policies and ethics