Skip to main content

Prediction of Protein Function

Two Basic Concepts and One Practical Recipe

  • Chapter
Discovering Biomolecular Mechanisms with Computational Biology

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The analysis of uncharacterized biomolecular sequences obtained as a result of genetic screens, expression profile studies, etc. is a standard task in a life science research environment. The understanding of protein function is typically the main difficulty. This chapter intends to give practical advise to students and researchers that have only introductory knowledge in the field of protein sequence analysis.

Applicable theoretical approaches range from (1) textual analyses, interpretation in terms of patterns of physical properties of amino acid side chains and (2) the extrapolation of empirically established relationships between local sequence motifs with known structural and functional properties to the collection of sequence segment families with sequence distance metrics and protein function derivation with annotation transfer (concept of homologous families). Here, the impact of different techniques for the biological interpretation of targets is discussed from the practitioner s point of view and illustrated with examples from recent research reports. Although sequence similarity searching techniques are the most powerful instruments for the analysis of high-complexity regions, other techniques can supply important additional evaluations including the assessment of applicability of the sequence homology concept for the given target segment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Novatchkova M, Eisenhaber F. Can molecular mechanisms of biological processes be extracted from expression profiles? Case study: Endothelial contribution to tumor-induced angiogenesis. Bioessays 2001; 23:1159–1175.

    PubMed  CAS  Google Scholar 

  2. Zhang MQ. Computational prediction of eukaryotic protein-coding genes. Nat Rev Genet 2002; 3:698–709.

    PubMed  CAS  Google Scholar 

  3. Fickett JW. ORFs and genes: How strong a connection? J Comput Biol 1995; 2:117–123.

    PubMed  CAS  Google Scholar 

  4. Harrison PM, Hegyi H, Balasubramanian S et al. Molecular fossils in the human genome: Identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res 2002; 12:272–280.

    PubMed  CAS  Google Scholar 

  5. Bork P, Dandekar T, Diaz-Lazcoz Y et al. Predicting function: From genes to genomes and back. J Mol Biol 1998; 283:707–725.

    PubMed  CAS  Google Scholar 

  6. Altschul S, Boguski M, Gish W et al. Issues in searching molecular sequence databases. Nature Genetics 1994; 6:119–129.

    PubMed  CAS  Google Scholar 

  7. Yuan YP, Schultz J, Mlodzik M et al. Secreted fringe-like signaling molecules may be glycosyltransferases. Cell 1997; 88:9–11.

    PubMed  CAS  Google Scholar 

  8. Rea S, Eisenhaber F, O’Carroll D et al. Regulation of chromatin structure by site-specific histone h3 methyltransferases. Nature 2000; 406:593–599.

    PubMed  CAS  Google Scholar 

  9. Ivanov D, Schleiffer A, Eisenhaber F et al. Ecol is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 2002; 12:323–328.

    PubMed  CAS  Google Scholar 

  10. Dlakic M. Chromatin silencing protein and pachytene checkpoint regulator dotlp has a methyltransferase fold. Trends Biochem Sci 2001; 26:405–407.

    PubMed  CAS  Google Scholar 

  11. van Leeuwen F, Gafken PR, Gottschling DE. Dotlp modulates silencing in yeast by methylation of the nucleosome core. Cell 2002; 109:745–756.

    PubMed  Google Scholar 

  12. Aravind L, Koonin EV. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate-and iron-dependent dioxygenases. Genome Biol 2001; 2:RESEARCH0007.

    Google Scholar 

  13. Trewick SC, Henshaw TF, Hausinger RP et al. Oxidative demethylation by escherichia coli AlkB directly reverts DNA base damage. Nature 2002; 419:174–178.

    PubMed  CAS  Google Scholar 

  14. Falnes PO, Johansen RF, Seeberg E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia Coli. Nature 2002; 419:178–182.

    PubMed  CAS  Google Scholar 

  15. Altschul SF, Madden TL, Schaffer AA et al. Gapped blast and PSI-blast: A new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402.

    PubMed  CAS  Google Scholar 

  16. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Nat Acad Sci USA 1992; 89:10915–10919.

    PubMed  CAS  Google Scholar 

  17. Henikoff S, Henikoff JG. Amino acid substitution matrices. Adv Protein Chem 2000; 54:73–97.

    PubMed  CAS  Google Scholar 

  18. Pollock DD, Taylor WR, Goldman N. Coevolving protein residues: Maximum likelihood identification and relationship to structure. J Mol Biol 1999; 287:187–198.

    PubMed  CAS  Google Scholar 

  19. Cootes AP, Curmi PM, Cunningham R et al. The dependence of Amino acid pair correlations on structural environment. Proteins 1998; 32:175–189.

    PubMed  CAS  Google Scholar 

  20. Chelvanayagam G, Eggenschwiler A, Knecht L et al. An analysis of simultaneous variation in protein structures. Protein Eng 1997; 10:307–316.

    PubMed  CAS  Google Scholar 

  21. Eisenhaber B, Bork P, Eisenhaber F. Sequence properties of GPI-anchored proteins near the Ω-site: Constraints for the polypeptide binding site of the putative transamidase. Protein Eng 1998; 11:1155–1161.

    PubMed  CAS  Google Scholar 

  22. Maurer-Stroh S, Eisenhaber B, Eisenhaber F. N-terminal N-myristoylation of proteins: Prediction of substrate proteins from Amino acid sequence. J Mol Biol 2002; 317:541–557.

    PubMed  CAS  Google Scholar 

  23. Sander C, Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 1991; 9:56–68.

    PubMed  CAS  Google Scholar 

  24. Dcvos D, Valencia A. Practical limits of function prediction. Proteins 2000; 41:98–107.

    Google Scholar 

  25. Wootton JC, Federhen S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol 1996; 266:554–571.

    PubMed  CAS  Google Scholar 

  26. Wootton JC. Sequences with ‘Unusual’ Amino acid compositions. Curr Op Struct Biol 1994; 4:413–421.

    CAS  Google Scholar 

  27. Saqi M. An analysis of structural instances of low complexity sequence segments. Protein Eng 1995; 8:1069–1073.

    PubMed  CAS  Google Scholar 

  28. Senti K, Keleman K, Eisenhaber F et al. Brakeless is required for lamina targeting of R1-R6 axons in the Drosophila visual system. Development 2000; 127:2291–2301.

    PubMed  CAS  Google Scholar 

  29. Eisenhaber B, Eisenhaber F. Sequence complexity of proteins and its significance in annotation. In: Subramaniam S, ed. Bioinformatics in the Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. New York: Wiley Interscience, 2005:4, (DOI:10.1002/047001153X.g 403313).

    Google Scholar 

  30. Falquet L, Pagni M, Bucher P et al. The PROSITE database, its status in 2002. Nucleic Acids Res 2002; 30:235–238.

    PubMed  CAS  Google Scholar 

  31. Maurer-Stroh S, Eisenhaber B, Eisenhaber F. N-terminal N-myristoylation of proteins: Refinement of the sequence motif and its taxon-specific differences. J Mol Biol 2002; 317:523–540.

    PubMed  CAS  Google Scholar 

  32. Panizza S, Tanaka T, Hochwagen A et al. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol 2000; 10:1557–1564.

    PubMed  CAS  Google Scholar 

  33. Brendel V, Bucher P, Nourbakhsh IR et al. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci USA 1992; 89:2002–2006.

    PubMed  CAS  Google Scholar 

  34. Karlin S, Brendel V. Chance and statistical significance in protein and DNA sequence analysis. Science 1992; 257:39–49.

    PubMed  CAS  Google Scholar 

  35. Promponas VJ, Enright AJ, Tsoka S et al. CAST: An iterative algorithm for the complexity analysis of sequence tracts. Complexity analysis of sequence tracts. Bioinformatics 2000; 16:915–922.

    PubMed  CAS  Google Scholar 

  36. Nielsen H, Brunak S, von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 1999; 12:3–9.

    PubMed  CAS  Google Scholar 

  37. Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 1999; 8:978–984.

    PubMed  CAS  Google Scholar 

  38. Emanuelsson O, von Heijne G, Schneider G. Analysis and prediction of mitochondrial targeting peptides. Methods Cell Biol 2001; 65:175–187.

    PubMed  CAS  Google Scholar 

  39. Menne KM, Hermjakob H, Apweiler R. A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics 2000; 16:741–742.

    PubMed  CAS  Google Scholar 

  40. Emanuelsson O, von Heijne G. Prediction of organellar targeting signals. Biochim Biophys Acta 2001; 1541:114–119.

    PubMed  CAS  Google Scholar 

  41. Neuberger G, Maurer-Stroh S, Eisenhaber B et al. Prediction of PTS 1 signal dependent peroxysomal targeting from protein sequences, submitted 2002.

    Google Scholar 

  42. Denny PW, Gokool S, Russell DG et al. Acylation-dependent protein export in leishmania. J Biol Chem 2000; 275:11017–11025.

    PubMed  CAS  Google Scholar 

  43. Eisenhaber B, Bork P, Eisenhaber F. Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 1999; 292:741–758.

    PubMed  CAS  Google Scholar 

  44. Eisenhaber B, Bork P, Yuan Y et al. Automated annotation of GPI anchor sites: Case study C. Elegans. Trends Biochem Sci 2000; 25:340–341.

    PubMed  CAS  Google Scholar 

  45. Eisenhaber B, Bork P, Eisenhaber F. Post-translational GPI lipid anchor modification of proteins in kingdoms of life: Analysis of protein sequence data from complete genomes. Protein Eng 2001; 14:17–25.

    PubMed  CAS  Google Scholar 

  46. Eisenhaber B, Schneider G, Wildpaner M et al. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for aspergillus nidulans, Candida albicans, neurospora crassa, Saccharomyces Cerevisiae and schizosaccharomyces pombe. J Mol Biol 2004; 337:243–253.

    PubMed  CAS  Google Scholar 

  47. Eisenhaber B, Wildpaner M, Schultz CJ et al. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence-and genome-wide studies for arabidopsis and rice. Plant Physiol 2003; 133:1691–1701.

    PubMed  CAS  Google Scholar 

  48. Eisenhaber B, Eisenhaber F, Maurer-Stroh S et al. Prediction of sequence signals for lipid post-translational modifications: Insights from case studies. Proteomics 2004; 4:1614–1625.

    PubMed  CAS  Google Scholar 

  49. Minor Jr DL, Kim PS. Context-dependent secondary structure formation of a designed protein sequence. Nature 1996; 380:730–734.

    PubMed  CAS  Google Scholar 

  50. Blom N, Gammeltoft S, Brunak S. Sequence and structurebased prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999; 294:1351–1362.

    PubMed  CAS  Google Scholar 

  51. Hansen JE, Lund O, Tolstrup N et al. NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998; 15:115–130.

    PubMed  CAS  Google Scholar 

  52. Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002; 310–322.

    Google Scholar 

  53. Cokol M, Nair R, Rost B. Finding nuclear localization signals. EMBO Rep 2000; 1:411–415.

    PubMed  CAS  Google Scholar 

  54. Yoneda Y. Nudeocytoplasmic protein traffic and its significance to cell function. Genes Cells 2000; 5:777–787.

    PubMed  CAS  Google Scholar 

  55. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996; 21:267–271.

    PubMed  CAS  Google Scholar 

  56. Lupas A. Predicting coiled-coil regions in proteins. Curr Opin Struct Biol 1997; 7:388–393.

    PubMed  CAS  Google Scholar 

  57. Bateman A, Birney E, Cerruti L et al. The Pfam protein families database. Nucleic Acids Res 2002; 30:276–280.

    PubMed  CAS  Google Scholar 

  58. Krogh A, Larsson B, von Heijne G et al. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J Mol Biol 2001; 305:567–580.

    PubMed  CAS  Google Scholar 

  59. Cserzo M, Wallin E, Simon I et al. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method. Protein Eng 1997; 10:673–676.

    PubMed  CAS  Google Scholar 

  60. Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 2001; 17:646–653.

    PubMed  CAS  Google Scholar 

  61. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 1992; 225:487–494.

    Google Scholar 

  62. Picot D, Garavito RM. Prostaglandin H synthase: Implications for membrane structure. FEBS Lett 1994; 346:21–25.

    PubMed  CAS  Google Scholar 

  63. Wendt KU, Lenhart A, Schulz GE. The structure of the membrane protein squalene-hopene cyclase at 2.0 a resolution. J Mol Biol 1999; 286:175–187.

    PubMed  CAS  Google Scholar 

  64. Sukumar N, Xu Y, Gatti DL et al. Structure of an active soluble mutant of the membrane-associated (S)-mandelate dehydrogenase. Biochem 2001; 40:9870–9878.

    CAS  Google Scholar 

  65. Goder V, Spiess M. Topogenesis of membrane proteins: Determinants and dynamics. FEBS Lett 2001; 504:87–93.

    PubMed  CAS  Google Scholar 

  66. Trifonov EN. Segmented structure of protein sequences and early evolution of genome by combinatorial fusion of DNA elements. J Mol Evol 1995; 40:337–342.

    PubMed  CAS  Google Scholar 

  67. Wheelan SJ, Marchler-Bauer A, Bryant SH. Domain size distributions can predict domain boundaries. Bioinformatics 2000; 16:613–618.

    PubMed  CAS  Google Scholar 

  68. Xu D, Nussinov R. Favorable domain size in proteins. Fold Des 1998; 3:11–17.

    PubMed  CAS  Google Scholar 

  69. Henikoff JG, Pietrokovski S, McCallum CM et al. Blocks-based methods for detecting protein homology. Electrophoresis 2000; 21:1700–1706.

    PubMed  CAS  Google Scholar 

  70. Attwood TK, Beck ME, Flower DR et al. The PRINTS protein fingerprint database in its fifth year. Nucleic Acids Res 1998; 26:304–308.

    PubMed  CAS  Google Scholar 

  71. Letunic I, Goodstadt L, Dickens NJ et al. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 2002; 30:242–244.

    PubMed  CAS  Google Scholar 

  72. Silverstein KA, Kilian A, Freeman JL et al. PANAL: An integrated resource for protein sequence ANALysis. Bioinformatics 2000; 16:1157–1158.

    PubMed  CAS  Google Scholar 

  73. Marchler-Bauer A, Panchenko AR, Shoemaker BA et al. CDD: A database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 2002; 30:281–283.

    PubMed  CAS  Google Scholar 

  74. Ponting CP, Schultz J, Copley RR et al. Evolution of domain families. Adv Protein Chem 2000; 54:185–244.

    PubMed  CAS  Google Scholar 

  75. Chelvanayagam G, Knecht L, Jenny T et al. A combinatorial distance-constraint approach to predicting protein tertiary models from known secondary structure. Fold Des 1998; 3:149–160.

    PubMed  CAS  Google Scholar 

  76. Mott R. Accurate formula for P-values of gapped local sequence and profile alignments. J Mol Biol 2000; 300:649–659.

    PubMed  CAS  Google Scholar 

  77. Andrade MA, Ponting CP, Gibson TJ et al. Homology-based method for identification of protein repeats using statistical significance estimates. J Mol Biol 2000; 298:521–537.

    PubMed  CAS  Google Scholar 

  78. Altschul SF, Koonin EV. Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends Biochem Sci 1998; 23:444–447.

    PubMed  CAS  Google Scholar 

  79. Karplus K, Hu B. Evaluation of protein multiple alignments by SAM-T99 using the BAliBASE multiple alignment test set. Bioinformatics 2001; 17:713–720.

    PubMed  CAS  Google Scholar 

  80. Karplus K, Karchin R, Barrett C et al. What is the value added by human intervention in protein structure prediction? Proteins 2001; 45(Suppl 5):86–91.

    Google Scholar 

  81. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680.

    PubMed  CAS  Google Scholar 

  82. Higgins D, Thompson JD, Gibson TJ. Using CLUSTAL for multiple sequence alignment. Meth Enzymol 1996; 266:383–402.

    PubMed  CAS  Google Scholar 

  83. Bork P, Gibson TJ. Applying motif and profile searches. Meth Enzymol 1996; 266:162–184.

    PubMed  CAS  Google Scholar 

  84. Musacchio A, Gibson TJ, Rice P et al. The PH-domain: A common piece in the structural patch work of signalling proteins. Trends Biochem Sci 1993; 18:343–348.

    PubMed  CAS  Google Scholar 

  85. Gibson TJ, Hyvönen M, Musacchio A et al. PH domain: The first anniversary. Trends Biochem Sci 1994; 19:349–353.

    PubMed  CAS  Google Scholar 

  86. Aravind L, Koonin EV. Classification of the caspase-hemoglobinase fold: Detection of new families and implications for the origin of the eukaryotic separins. Proteins 2002; 46:355–367.

    PubMed  CAS  Google Scholar 

  87. Reichsman F, Moore HM, Cumberledge S. Sequence homology between wingless/Wnt-1 and a lipid-binding domain in secreted phospholipase A2. Curr Biol 1999; 9:R353–R355.

    PubMed  CAS  Google Scholar 

  88. Barnes MR, Russell RB, Copley RR et al. A lipid-binding domain in Wnt: A case of mistaken identity? Curr Biol 1999; 9:R717–R719.

    PubMed  CAS  Google Scholar 

  89. Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 2000; 299:499–520.

    PubMed  CAS  Google Scholar 

  90. Fischer D. Hybrid fold recognition: Combining sequence derived properties with evolutionary information. Pac Symp Biocomput 2000; 5:119–130.

    Google Scholar 

  91. Mallick P, Goodwill KE, Fitz-Gibbon S et al. Selecting protein targets for structural genomics of pyrobaculum aerophilum: Validating automated fold assignment methods by using binary hypothesis testing. Proc Natl Acad Sci USA 2000; 97:2450–2455.

    PubMed  CAS  Google Scholar 

  92. Rychlewski L, Jaroszewski L, Li W et al. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 2000; 9:232–241.

    PubMed  CAS  Google Scholar 

  93. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16:404–405.

    PubMed  CAS  Google Scholar 

  94. Shindyalov IN, Bourne PE. Improving alignments in HM protocol with intermediate sequences. Forth Meeting on the Critical Assessment of Techniques for Protein Structure Prediction 2000; A92.

    Google Scholar 

  95. Gough J, Chothia C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res 2002; 30:268–272.

    PubMed  CAS  Google Scholar 

  96. Novatchkova M, Eisenhaber F. A CH domain-containing N terminus in NuMA? Protein Sci 2002; 11:2281–2284.

    PubMed  CAS  Google Scholar 

  97. Lorenz A, Wells JL, Pryce DW et al. Pombe meiotic linear elements contain proteins related to synaptonemal complex components. J Cell Sci 2004; 117:3343–3351.

    PubMed  CAS  Google Scholar 

  98. Rabitsch KP, Gregan J, Schleiffer A et al. Two fission yeast homologs of Drosophila mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 2004; 14:287–301.

    PubMed  CAS  Google Scholar 

  99. Ponting CP. Issues in predicting protein function from sequence. Brief Bioinform 2001; 2:19–29.

    PubMed  CAS  Google Scholar 

  100. Cuff JA, Clamp ME, Siddiqui AS et al. JPred: A consensus secondary structure prediction server. Bioinformatics 1998; 14:892–893.

    PubMed  CAS  Google Scholar 

  101. Shindyalov IN, Bourne PE. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 1998; 11:739–747.

    PubMed  CAS  Google Scholar 

  102. Wildpaner M, Schneider G, Schleiffer A et al. Taxonomy workbench. Bioinformatics 2001; 17:1179–1182.

    PubMed  CAS  Google Scholar 

  103. Devos D, Valencia A. Intrinsic errors in genome annotation. Trends Genet 2001; 17:429–431.

    PubMed  CAS  Google Scholar 

  104. Ponting CP, Benjamin DR. A novel family of Ras-binding domains. Trends Biochem Sci 1996; 21:422–425.

    PubMed  CAS  Google Scholar 

  105. Kalhammer G, Bahler M, Schmitz F et al. Ras-binding domains: Predicting function versus folding. FEBS Lett 1997; 414:599–602.

    PubMed  CAS  Google Scholar 

  106. Iyer LM, Aravind L, Bork P et al. Quoderat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences. Genome Biol 2001; 2, (RESEARCH0051).

    Google Scholar 

  107. Strynadka NCJ, Eisenstein M, Katchalski-Katzir E et al. Molecular docking programs successfully predict the binding of a B-lactamase inhibitory protein to TEM-1 BETA-lactamase. Nature Struct Biol 1996; 3:233–239.

    PubMed  CAS  Google Scholar 

  108. Dandekar T, Snel B, Huynen M et al. Conservation of gene order: A fingerprint of proteins that physically interact. Trends Biochem Sci 1998; 23:324–328.

    PubMed  CAS  Google Scholar 

  109. Marcotte EM, Pellegrini M, Ng HL et al. Detecting protein function and protein-protein interactions from genome sequences. Science 1999; 285:751–753.

    PubMed  CAS  Google Scholar 

  110. Enright AJ, Iliopoulos I, Kyrpides NC et al. Protein interaction maps for complete genomes based on gene fusion events. Nature 1999; 402:86–90.

    PubMed  CAS  Google Scholar 

  111. Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415:141–147.

    PubMed  CAS  Google Scholar 

  112. von Mering C, Krause R, Snel B et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002; 417:399–403.

    Google Scholar 

  113. Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces Cerevisiae by mass spectrometry. Nature 2002; 415:180–183.

    PubMed  CAS  Google Scholar 

  114. Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol 2000; 18:1257–1261.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Eisenhaber, F. (2006). Prediction of Protein Function. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_4

Download citation

Publish with us

Policies and ethics