Skip to main content

The Muscle Pattern of Drosophila

  • Chapter
Muscle Development in Drosophila

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The musculature of insects is composed of an external, multilayered array of body wall muscles (somatic musculature), an internal layer of visceral muscles that surround the digestive tract and gonads, and specialized myo-epithelial tubes forming the vascular system. All three types of muscle are represented in Drosophila at the larval and adult stage. In this chapter, the somatic, visceral, gonadal and cardiac muscle pattern of Drosophila will be described. An attempt will be made to discuss possible homologies between the muscle pattern of Drosophila, which is a member of a highly derived dade of insects, and that of more primitive insects and other animal groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rieger RM, Tyler S, Smith III JPS et al. Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ eds. Microscopic Anatomy of Invertebrates. New York: Wiley-Liss, 1991:3.

    Google Scholar 

  2. Morris J, Nallur R, Ladurner P et al. The embryonic development of the flatworm Macrostomum sp. Dev Gen Evol 2004; 214:220–239.

    Article  Google Scholar 

  3. Man ton SM. The arthropoda. Habits, functional morphology and evolution. Oxford: Clarendon Press, 1977.

    Google Scholar 

  4. Snodgrass RE. Principles of Insect Morphology. New York: McGraw-Hill, 1935:311–315.

    Google Scholar 

  5. Bate M. Mesoderm. In: Bate M, Martinez-Arias A, eds. The Development of Drosophila. New York: Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  6. Campos-Ortega JA, Hartenstein V. The embryonic development of Drosophila melanogaster. 2nd Ed. Springer, 1997.

    Google Scholar 

  7. Haas MS, Brown SJ, Beeman RW. Pondering the procephalon: The segmental origin of the labrum. Dev Genes Evol 2001; 211:89–95.

    Article  PubMed  CAS  Google Scholar 

  8. Jürgens G, Hartenstein V. The terminal regions of the body pattern. In: Bate M, Martinez-Arias A, eds. The Development of Drosophila. New York: Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  9. Rempel JG. The evolution of the insect head: The endless dispute. Quaest Entomol 1975; 11:7–25.

    Google Scholar 

  10. Younossi-Hartenstein AY, Tepass U, Hartenstein V. The embryonic origin of the primordia of the adult Drosophila head. Roux’s Arch Dev Biol 1993; 203:60–73.

    Article  Google Scholar 

  11. Robertson CW. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J Morphol 1936; 59:351–399.

    Article  Google Scholar 

  12. Miller A. The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M, ed. The Biology of Drosophila. New York: Wiley, 1950:420–534.

    Google Scholar 

  13. Chapman RF. The insects: Structure and function. Cambridge: Harvard University Press, 1982.

    Google Scholar 

  14. Hughes GM. The coordination of insect movements. I. The walking movements of insects. J Exp Biol 1952; 29:267–284

    Google Scholar 

  15. Graham-Smith GS. The alimentary canal of Calliphora erythrocephala L., with special reference to its musculature, and to the proventriculus, rectal valve, and rectal papillae. Parasitology 1934; 26:176–248.

    Google Scholar 

  16. Crossley AC. The morphology and development of the Drosophila muscular system. In: Ashburner M, Wright TRF, eds. The Genetics and Biology of Drosophila, Vol. 2b. New York: Academic Press, 1979:499–560.

    Google Scholar 

  17. Klapper R, Stute C, Schomaker O et al. The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech Dev 2002; 110:85–96.

    Article  PubMed  CAS  Google Scholar 

  18. Martin BS, Ruiz-Gomez M, Landgraf M et al. A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo. Development 2001; 128:3331–8.

    PubMed  CAS  Google Scholar 

  19. King RC. Ovarian development in Drosophila melanogaster. New York, London, San Francisco: Academic press, 1970.

    Google Scholar 

  20. Lindsley DL, Tokuyasu KT. Spermatogenesis. In: Ashburner M, Wright TRF, eds. The Genetics and Biology of Drosophila, Vol. 2b. New York: Academic Press, 1980:226–295.

    Google Scholar 

  21. Mahowald AP, Kambysellis MP. Oogenesis. In: Ashburner M, Wright TRF, eds. The Genetics and Biology of Drosophila, Vol. 2b. New York: Academic Press, 1980:141–225.

    Google Scholar 

  22. Ruppert EE, Carle KJ. Morphology of metazoan circulatory systems. Zoomorphology 1983; 103:193–208.

    Article  Google Scholar 

  23. Rizki TM. The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF, eds. The Genetics and Biology of Drosophila, Vol. 2b. New York: Academic Press, 1978:397–452.

    Google Scholar 

  24. Jensen PV. Structure and metamorphosis of the larval heart of Calliphora erythrocephala. K Dansk Vidensk Selsk Biol Skrift 1973; 20:2–19.

    Google Scholar 

  25. Molina MR, Scripps RM. Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech Dev 2001; 109:51–59.

    Article  PubMed  CAS  Google Scholar 

  26. DeVelasco B, Shen J, Go S et al. Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev Biol 2004; 274:280–294.

    Article  CAS  Google Scholar 

  27. Ward EJ, Skeath JB. Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. Development 2000; 127:4959–4969.

    PubMed  CAS  Google Scholar 

  28. Luther A. Untersuchungen and rhabdocoelen turbellarien IV. Ueber einige repraesentanten der familie proxenetidae. Acta Zool Fenn 1943; 38:3–100.

    Google Scholar 

  29. Anderson MS, Halpern ME, Keshishian H. Identification of the neuropeptide transmitter proctolin in Drosophila larvae: Characterization of muscle fiber-specific neuromuscular endings. J Neurosci 1988; 8:242–55.

    PubMed  CAS  Google Scholar 

  30. Ferris GF. External morphology of the adult. In: Demerec M, ed. The Biology of Drosophila. New York: Wiley, 1950:368–419.

    Google Scholar 

  31. Eastham LES. The postembryonic development of Phaenoserphus viator, aq parasite of the larva of Pterosticus niger, with notes on the anatomy of the larva. Parasitology 1929; 21:1–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Hartenstein, V. (2006). The Muscle Pattern of Drosophila . In: Muscle Development in Drosophila. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/0-387-32963-3_2

Download citation

Publish with us

Policies and ethics