Skip to main content

Solvability of systems of interval linear equations and inequalities

  • Chapter
Linear Optimization Problems with Inexact Data

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.21 Notes and references

  1. J. Albrecht, Monotone Iterationsfolgen und ihre Verwendung zur Lösung linearer Gleichungssysteme, Numerische Mathematik, 3 (1961), pp. 345–358.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Alefeld, V. Kreinovich, and G. Mayer, The shape of the symmetric solution set, in Applications of Interval Computations, R. B. Kearfott and V. Kreinovich, eds., Dordrecht, 1996, Kluwer, pp. 61–79.

    Google Scholar 

  3. G. Alefeld, V. Kreinovich, and G. Mayer, On the shape of the symmetric, persymmetric, and skew-symmetric solution set, SIAM Journal on Matrix Analysis and Applications, 18 (1997), pp. 693–705.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Alefeld, V. Kreinovich, and G. Mayer, The shape of the solution set for systems of interval linear equations with dependent coefficients, Mathematische Nachrichten, 192 (1998), pp. 23–36.

    MATH  MathSciNet  Google Scholar 

  5. G. Alefeld and G. Mayer, On the symmetric and unsymmetric solution set of interval systems, SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 1223–1240.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Baumann, A regularity criterion for interval matrices, in Collection of Scientific Papers Honouring Prof. Dr. K. Nickel on Occasion of his 60th Birthday, Part I, J. Garloff et al., eds., Freiburg, 1984, Albert-Ludwigs-Universität, pp. 45–50.

    Google Scholar 

  7. H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in Interval Mathematics, K. Nickel, ed., Lecture Notes in Computer Science 29, Springer-Verlag, Berlin, 1975, pp. 150–159.

    Google Scholar 

  8. C. Bliek, Computer Methods for Design Automation, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, July 1992.

    Google Scholar 

  9. G. E. Coxson, Computing exact bounds on elements of an inverse interval matrix is NP-hard, Reliable Computing, 5 (1999), pp. 137–142.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Deif, Sensitivity Analysis in Linear Systems, Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  11. J. Farkas, Theorie der einfachen Ungleichungen, Journal für die Reine und Angewandte Mathematik, 124 (1902), pp. 1–27.

    Article  Google Scholar 

  12. J. Garloff, Totally nonnegative interval matrices, in Interval Mathematics 1980, K. Nickel, ed., Academic Press, New York, 1980, pp. 317–327.

    Google Scholar 

  13. W. Gerlach, Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix, Mathematische Operationsforschung und Statistik, Series Optimization, 12 (1981), pp. 41–43.

    MATH  MathSciNet  Google Scholar 

  14. G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.

    MATH  Google Scholar 

  15. F. Gray, Pulse code communication. United States Patent Number 2,632,058. March 17, 1953.

    Google Scholar 

  16. E. R. Hansen, Bounding the solution of interval linear equations, SIAM Journal on Numerical Analysis, 29 (1992), pp. 1493–1503.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Heindl, Some inclusion results based on a generalized version of the Oettli-Prager theorem, Zeitschrift für Angewandte Mathematik und Mechanik, Supplement 3, 76 (1996), pp. 263–266.

    MATH  Google Scholar 

  18. J. Herzberger and D. Bethke, On two algorithms for bounding the inverse of an interval matrix, Interval Computations, 1 (1991), pp. 44–53.

    MATH  MathSciNet  Google Scholar 

  19. N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

    MATH  Google Scholar 

  20. K.-U. Jahn, Eine Theorie der Gleichungssysteme mit Intervallkoeffizienten, Zeitschrift für Angewandte Mathematik und Mechanik, 54 (1974), pp. 405–412.

    MATH  MathSciNet  Google Scholar 

  21. C. Jansson, Calculation of exact bounds for the solution set of linear interval systems, Linear Algebra and Its Applications, 251 (1997), pp. 321–340.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Kelling, Methods of solution of linear tolerance problems with interval arithmetic, in Computer Arithmetic and Enclosure Methods, L. Atanassova and J. Herzberger, eds., North-Holland, Amsterdam, 1992, pp. 269–277.

    Google Scholar 

  23. B. Kelling, Geometrische Untersuchungen zur eingeschränkten Lösungsmenge linearer Intervallgleichungssysteme, Zeitschrift für Angewandte Mathematik und Mechanik, 74 (1994), pp. 625–628.

    MATH  MathSciNet  Google Scholar 

  24. B. Kelling and D. Oelschlägel, Zur Lösung von linearen Toleranzproblemen, Wissenschaftliche Zeitschrift TH Leuna-Merseburg, 33 (1991), pp. 121–131.

    MATH  Google Scholar 

  25. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer Academic Publishers, Dordrecht, 1998. Chapter 21 and 22

    MATH  Google Scholar 

  26. A. V. Lakeyev and S. I. Noskov, A description of the set of solutions of a linear equation with intervally defined operator and right-hand side (in Russian), Doklady of the Russian Academy of Sciences, 330 (1993), pp. 430–433.

    Google Scholar 

  27. A. V. Lakeyev and S. I. Noskov, On the set of solutions of a linear equation with intervally defined operator and right-hand side (in Russian), Siberian Mathematical Journal, 35 (1994), pp. 1074–1084.

    MathSciNet  Google Scholar 

  28. G. Mayer and J. Rohn, On the applicability of the interval Gaussian algorithm, Reliable Computing, 4 (1998), pp. 205–222.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

    MATH  Google Scholar 

  30. R. E. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1979.

    MATH  Google Scholar 

  31. J. Nedoma, Sign-stable solutions of column-vague linear equation systems, Reliable Computing, 3 (1997), pp. 173–180.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Nedoma, Inaccurate linear equation systems with a restricted-rank error matrix, Linear and Multilinear Algebra, 44 (1998), pp. 29–44.

    MATH  MathSciNet  Google Scholar 

  33. J. Nedoma, On solving vague systems of linear equations with patternshaped columns, Linear Algebra and Its Applications, 324 (2001), pp. 107–118.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Nedoma, Positively regular vague matrices, Linear Algebra and Its Applications, 326 (2001), pp. 85–100.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Neumaier, Linear interval equations, in Interval Mathematics 1985, K. Nickel, ed., Lecture Notes in Computer Science 212, Springer-Verlag, Berlin, 1986, pp. 109–120.

    Google Scholar 

  36. A. Neumaier, Tolerance analysis with interval arithmetic, Freiburger Intervall-Berichte 86/9, Albert-Ludwigs-Universität, Freiburg, 1986.

    Google Scholar 

  37. A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  38. A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval equations, Reliable Computing, 5 (1999), pp. 131–136.

    Article  MATH  MathSciNet  Google Scholar 

  39. K. Nickel, Die Überschätzung des Wertebereichs einer Funktion in der Intervallrechnung mit Anwendungen auf lineare Gleichungssysteme, Computing, 18 (1977), pp. 15–36.

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Ning and R. B. Kearfott, A comparison of some methods for solving linear interval equations, SIAM Journal on Numerical Analysis, 34 (1997), pp. 1289–1305.

    Article  MATH  MathSciNet  Google Scholar 

  41. E. Nuding, Ein einfacher Beweis der Sätze von Oettli-Prager und J. Rohn, Freiburger Intervall-Berichte 86/9, Albert-Ludwigs-Universität, Freiburg, 1986.

    Google Scholar 

  42. E. Nuding and J. Wilhelm, Über Gleichungen und über Lösungen, Zeitschrift für Angewandte Mathematik und Mechanik, 52 (1972), pp. T188–T190.

    MATH  Google Scholar 

  43. W. Oettli, On the solution set of a linear system with inaccurate coefficients, SIAM Journal on Numerical Analysis, 2 (1965), pp. 115–118.

    Article  MATH  MathSciNet  Google Scholar 

  44. W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numerische Mathematik, 6 (1964), pp. 405–409.

    Article  MATH  MathSciNet  Google Scholar 

  45. S. Poljak and J. Rohn, Radius of nonsingularity, Research Report, KAM Series 88-117, Faculty of Mathematics and Physics, Charles University, Prague, December 1988.

    Google Scholar 

  46. S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Mathematics of Control, Signals, and Systems, 6 (1993), pp. 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  47. H. Ratschek and W. Sauer, Linear interval equations, Computing, 28 (1982), pp. 105–115.

    Article  MATH  MathSciNet  Google Scholar 

  48. G. Rex, Zum Regularitätsnachweis von Matrizen, Zeitschrift fur Angewandte Mathematik und Mechanik, 75 (1995), pp. S549–S550.

    MATH  Google Scholar 

  49. G. Rex and J. Rohn, A note on checking regularity of interval matrices, Linear and Multilinear Algebra, 39 (1995), pp. 259–262.

    MATH  MathSciNet  Google Scholar 

  50. G. Rex and J. Rohn, Sufficient conditions for regularity and singularity of interval matrices, SIAM Journal on Matrix Analysis and Applications, 20 (1999), pp. 437–445.

    Article  MathSciNet  Google Scholar 

  51. F. N. Ris, Interval Analysis and Applications to Linear Algebra, PhD thesis, Oxford University, Oxford, 1972.

    Google Scholar 

  52. J. Rohn, A perturbation theorem for linear equations. To appear.

    Google Scholar 

  53. J. Rohn, Soustavy lineárních rovnic s intervalově zadanými koeficienty, Ekonomicko-matematický obzor, 12 (1976), pp. 311–315.

    MATH  MathSciNet  Google Scholar 

  54. J. Rohn, Input-output planning with inexact data, Freiburger Intervall-Berichte 78/9, Albert-Ludwigs-Universität, Freiburg, 1978.

    Google Scholar 

  55. J. Rohn, Interval linear systems with prescribed column sums, Linear Algebra and Its Applications, 39 (1981), pp. 143–148.

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Rohn, Strong solvability of interval linear programming problems, Computing, 26 (1981), pp. 79–82.

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Rohn, Proofs to “Solving interval linear systems”, Freiburger Intervall-Berichte 84/7, Albert-Ludwigs-Universität, Freiburg, 1984.

    Google Scholar 

  58. J. Rohn, Solving interval linear systems, Freiburger Intervall-Berichte 84/7, Albert-Ludwigs-Universität, Freiburg, 1984.

    Google Scholar 

  59. J. Rohn, Miscellaneous results on linear interval systems, Freiburger Intervall-Berichte 85/9, Albert-Ludwigs-Universität, Freiburg, 1985. Theorem 1.2

    Google Scholar 

  60. J. Rohn, Inner solutions of linear interval systems, in Interval Mathematics 1985, K. Nickel, ed., Lecture Notes in Computer Science 212, Springer-Verlag, Berlin, 1986, pp. 157–158.

    Google Scholar 

  61. J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126 (1989), pp. 39–78.

    Article  MATH  MathSciNet  Google Scholar 

  62. J. Rohn, Characterization of a linear program in standard form by a family of linear programs with inequality constraints, Ekonomicko-matematický obzor, 26 (1990), pp. 71–73.

    MATH  MathSciNet  Google Scholar 

  63. J. Rohn, Interval solutions of linear interval equations, Aplikace matematiky, 35 (1990), pp. 220–224.

    MATH  MathSciNet  Google Scholar 

  64. J. Rohn, An existence theorem for systems of linear equations, Linear and Multilinear Algebra, 29 (1991), pp. 141–144.

    MATH  MathSciNet  Google Scholar 

  65. J. Rohn, Cheap and tight bounds: The recent result by E. Hansen can be made more efficient, Interval Computations, 4 (1993), pp. 13–21.

    MATH  MathSciNet  Google Scholar 

  66. J. Rohn, NP-hardness results for some linear and quadratic problems, Technical Report 619, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, January 1995.

    Google Scholar 

  67. J. Rohn, Linear programming with inexact data is NP-hard, Zeitschrift für Angewandte Mathematik und Mechanik, Supplement 3, 78 (1998), pp. S1051–S1052.

    MATH  MathSciNet  Google Scholar 

  68. J. Rohn, Computing the normA∞,1 is NP-hard, Linear and Multilinear Algebra, 47 (2000), pp. 195–204.

    MATH  MathSciNet  Google Scholar 

  69. J. Rohn, Solvability of systems of linear interval equations, SIAM Journal on Matrix Analysis and Applications, 25 (2003), pp. 237–245.

    Article  MATH  MathSciNet  Google Scholar 

  70. J. Rohn and V. Kreinovich, Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard, SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 415–420.

    Article  MATH  MathSciNet  Google Scholar 

  71. J. Rohn and J. Kreslová, Linear interval inequalities, Linear and Multilinear Algebra, 38 (1994), pp. 79–82.

    MATH  MathSciNet  Google Scholar 

  72. S. M. Rump, Solving algebraic problems with high accuracy, in A New Approach to Scientific Computation, U. Kulisch and W. Miranker, eds., Academic Press, New York, 1983, pp. 51–120.

    Google Scholar 

  73. S. M. Rump, On the solution of interval linear systems, Computing, 47 (1992), pp. 337–353.

    Article  MATH  MathSciNet  Google Scholar 

  74. S. M. Rump, Verification methods for dense and sparse systems of equations, in Topics in Validated Computations, J. Herzberger, ed., North-Holland, Amsterdam, 1994, pp. 63–135.

    Google Scholar 

  75. S. P. Shary, O nekotorykh metodakh resheniya lineinoi zadachi o dopuskakh, Preprint 6, Siberian Branch of the Soviet Academy of Sciences, Krasnoyarsk, 1989.

    Google Scholar 

  76. S. P. Shary, A new class of algorithms for optimal solution of interval linear systems, Interval Computations, 2 (1992), pp. 18–29.

    MATH  MathSciNet  Google Scholar 

  77. S. P. Shary, On controlled solution set of interval algebraic systems, Interval Computations, 6 (1992), pp. 66–75.

    MATH  MathSciNet  Google Scholar 

  78. S. P. Shary, Solving the tolerance problem for interval linear systems, Interval Computations, 2 (1994), pp. 6–26.

    MathSciNet  Google Scholar 

  79. S. P. Shary, Solving the linear interval tolerance problem, Mathematics and Computers in Simulation, 39 (1995), pp. 53–85.

    Article  MathSciNet  Google Scholar 

  80. S. P. Shary, Algebraic approach to the interval linear static identification, tolerance and control problems, or One more application of Kaucher arithmetic, Reliable Computing, 2 (1996), pp. 3–33.

    Article  MATH  MathSciNet  Google Scholar 

  81. S. P. Shary, Algebraic solutions to interval linear equations and their applications, in Numerical Methods and Error Bounds, G. Alefeld and J. Herzberger, eds., Mathematical Research, Vol. 89, Akademie Verlag, Berlin, 1996, pp. 224–233.

    Google Scholar 

  82. S. P. Shary, Controllable solutions sets to interval static systems, Applied Mathematics and Computation, 86 (1997), pp. 185–196.

    Article  MATH  MathSciNet  Google Scholar 

  83. S. P. Shary, A new technique in systems analysis under interval uncertainty and ambiguity, Reliable Computing, 8 (2002), pp. 321–418.

    Article  MATH  MathSciNet  Google Scholar 

  84. V. V. Shaydurov and S. P. Shary, Resheniye interval’noi algebraicheskoi zadachi o dopuskakh, Preprint 5, Siberian Branch of the Soviet Academy of Sciences, Krasnoyarsk, 1988.

    Google Scholar 

  85. Y. I. Shokin, Interval’nyj analiz, Nauka, Novosibirsk, 1981.

    Google Scholar 

  86. Y. I. Shokin, On interval problems, interval algorithms and their computational complexity, in Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer, and B. Lang, eds., Akademie Verlag, Berlin, 1996, pp. 314–328.

    Google Scholar 

  87. E. W. Weisstein, Gray code. http://mathworld.wolfram.com/GrayCode.html.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rohn, J. (2006). Solvability of systems of interval linear equations and inequalities. In: Linear Optimization Problems with Inexact Data. Springer, Boston, MA. https://doi.org/10.1007/0-387-32698-7_2

Download citation

Publish with us

Policies and ethics