Skip to main content

Curved DNA and Prokaryotic Promoters

A Mechanism for Activation of Transcription

  • Chapter
DNA Conformation and Transcription

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Intrinsically curved DNA structures often occur in or around origins of DNA replication, regions that regulate transcription, and DNA recombination loci, and are found in a wide variety of cellular and viral genomes from bacteria to man. In bacterial promoters, bent DNA structures are often located from immediately upstream of the −35 hexamer to around position −100 relative to the transcription start site (+1). They have a range of functions: facilitating RNA polymerase binding to the promoter, transition from closed to open promoter complexes, or transcription factor binding. To perform these functions, in some cases intrinsically curved structures function together with DNA bends that are induced by binding of RNA polymerase, transcription factors, or nucleoid-associated proteins. This chapter will describe how curved DNA structures are implicated in prokaryotic transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crick FH, Klug A. Kinky helix. Nature 1975; 255:530–533.

    Article  PubMed  CAS  Google Scholar 

  2. Sobell HM, Tsai CC, Gilbert SG et al. Organization of DNA in chromatin. Proc Natl Acad Sci USA 1976; 73:3068–3072.

    Article  PubMed  CAS  Google Scholar 

  3. Seising E, Wells RD, Alden CJ et al. Bent DNA: visualization of a base-paired and stacked A-B conformational junction. J Biol Chem 1979; 254:5417–5422.

    Google Scholar 

  4. Zhurkin VB, Lysov YP, Ivanov VI. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res 1979; 6:1081–1096.

    Article  PubMed  CAS  Google Scholar 

  5. Trifonov EN, Sussman JL. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci USA 1980; 77:3816–3820.

    Article  PubMed  CAS  Google Scholar 

  6. Wu HM, Crothers DM. The locus of sequence-directed and protein-induced DNA bending. Nature 1984; 308:509–513.

    Article  PubMed  CAS  Google Scholar 

  7. Marini JC, Levene SD, Crothers DM et al. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 1982; 79:7664–7668.

    Article  PubMed  CAS  Google Scholar 

  8. Hagerman PJ. Sequence-directed curvature of DNA. Nature 1986; 321:449–450.

    Article  PubMed  CAS  Google Scholar 

  9. Diekmann S. Sequence specificity of curved DNA. FEBS Lett 1986; 195:53–56.

    Article  PubMed  CAS  Google Scholar 

  10. Ulanovsky LE, Trifonov EN. Estimation of wedge components in curved DNA. Nature 1987; 326:720–722.

    Article  PubMed  CAS  Google Scholar 

  11. Koo HS, Crothers DM. Calibration of DNA curvature and a unified description of sequence-directed bending. Proc Natl Acad Sci USA 1988; 85:1763–1767.

    Article  PubMed  CAS  Google Scholar 

  12. Calladine CR, Drew HR, McCall MJ. The intrinsic curvature of DNA in solution. J Mol Biol 1988; 201:127–137.

    Article  PubMed  CAS  Google Scholar 

  13. Olson WK, Marky NL, Jernigan RL et al. Influence of fluctuations on DNA curvature. A comparison of flexible and static wedge models of intrinsically bent DNA. J Mol Biol 1993; 232:530–554.

    Article  PubMed  CAS  Google Scholar 

  14. Mack DR, Chiu TK, Dickerson RE. Intrinsic bending and deformability at the T-A step of CCTTTAAAGG: a comparative analysis of T-A and A-T steps within A-tracts. J Mol Biol 2001; 312:1037–1049.

    Article  PubMed  CAS  Google Scholar 

  15. Barbie A, Zimmer DP, Crothers DM. Structural origins of adenine-tract bending. Proc Natl Acad Sci USA 2003; 100:2369–2373.

    Article  CAS  Google Scholar 

  16. Zahn K, Blattner FR. Direct evidence for DNA bending at the λ replication origin. Science 1987; 236:416–422.

    Article  PubMed  CAS  Google Scholar 

  17. Hertz GZ, Young MR, Mertz JE. The A+T-rich sequence of the simian virus 40 origin is essential for replication and is involved in bending of the viral DNA. J Virol 1987; 61:2322–2325.

    PubMed  CAS  Google Scholar 

  18. Williams JS, Eckdahl TT, Anderson JN. Bent DNA functions as a replication enhancer in Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:2763–2769.

    PubMed  CAS  Google Scholar 

  19. Du C, Sanzgiri RP, Shaiu WL et al. Modular structural elements in the replication origin region of Tetrahymena rDNA. Nucleic Acids Res 1995; 23:1766–1774.

    Article  PubMed  CAS  Google Scholar 

  20. Polaczek P, Kwan K, Liberies DA et al. Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli. Mol Microbiol 1997; 26:261–275.

    Article  PubMed  CAS  Google Scholar 

  21. Kusakabe T, Sugimoto Y, Hirota Y et al. Isolation of replicational cue elements from a library of bent DNAs of Aspergillus oryzae. Mol Biol Rep 2000; 27:13–19.

    Article  PubMed  CAS  Google Scholar 

  22. Milot E, Belmaaza A, Wallenburg JC et al. Chromosomal illegitimate recombination in mamma lian cells is associated with intrinsically bent DNA elements. EMBO J 1992; 11:5063–5070.

    PubMed  CAS  Google Scholar 

  23. Mazin A, Milot E, Devoret R et al. KIN 17, a mouse nuclear protein, binds to bent DNA fragments that are found at illegitimate recombination junctions in mammalian cells. Mol Gen Genet 1994; 244:435–438.

    Article  PubMed  CAS  Google Scholar 

  24. Travers A. DNA structure. Curves with a function. Nature 1989; 341:184–185.

    Article  PubMed  CAS  Google Scholar 

  25. Hagerman PJ. Sequence-directed curvature of DNA. Annu Rev Biochem 1990; 59:755–781.

    Article  PubMed  CAS  Google Scholar 

  26. Pérez-Martín J, Rojo F, de Lorenzo V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 1994; 58:268–290.

    PubMed  Google Scholar 

  27. Ohyama T. Intrinsic DNA bends: an organizer of local chromatin structure for transcription. Bioessays 2001; 23:708–715.

    Article  PubMed  CAS  Google Scholar 

  28. Levene SD, Crothers DM. Ring closure probabilities for DNA fragments by Monte Carlo simulation. J Mol Biol 1986; 189:61–72.

    Article  PubMed  CAS  Google Scholar 

  29. Laundon CH, Griffith JD. Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 1988; 52:545–549.

    Article  PubMed  CAS  Google Scholar 

  30. Liu-Johnson HN, Gartenberg MR, Crothers DM. The DNA binding domain and bending angle of E. coli CAP protein. Cell 1986; 47:995–1005.

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka K, Muramatsu S, Yamada H et al. Systematic characterization of curved DNA segments randomly cloned from Escherichia coli and their functional significance. Mol Gen Genet 1991; 226:367–376.

    Article  PubMed  CAS  Google Scholar 

  32. Asayama M, Yamamoto A, Kobayashi Y. Dimer form of phosphorylated Spo0A, a transcriptional regulator, stimulates the spo0F transcription at the initiation of sporulation in Bacillus subtilis. J Mol Biol 1995; 250:11–23.

    Article  PubMed  CAS  Google Scholar 

  33. Espinosa-Urgel M, Tormo A. σS-dependent promoters in Escherichia coli are located in DNA regions with intrinsic curvature. Nucleic Acids Res 1993; 21:3667–3670.

    Article  PubMed  CAS  Google Scholar 

  34. Petersen L, Larsen TS, Ussery DW et al. RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a −35 box. J Mol Biol 2003; 326:1361–1372.

    Article  PubMed  CAS  Google Scholar 

  35. Highlander SK, Weinstock GM. Static DNA bending and protein interactions within the Pasteurella haemolytica leukotoxin promoter region: development of an activation model for leukotoxin transcriptional control. DNA Cell Biol 1994; 13:171–181.

    PubMed  CAS  Google Scholar 

  36. Plaskon RR, Wartell RM. Sequence distributions associated with DNA curvature are found up stream of strong E. coli promoters. Nucleic Acids Res 1987; 15:785–796.

    Article  PubMed  CAS  Google Scholar 

  37. Bauer BF, Kar EG, Elford RM et al. Sequence determinants for promoter strength in the leuV operon of Escherichia coli. Gene 1988; 63:123–134.

    Article  PubMed  CAS  Google Scholar 

  38. Bossi L, Smith DM. Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella. Cell 1984; 39:643–652.

    Article  PubMed  CAS  Google Scholar 

  39. Zacharias M, Theissen G, Bradaczek C et al. Analysis of sequence elements important for the synthesis and control of ribosomal RNA in E. coli. Biochimie 1991; 73:699–712.

    Article  PubMed  CAS  Google Scholar 

  40. Ohyama T, Nagumo M, Hirota Y et al. Alteration of the curved helical structure located in the upstream region of the β-lactamase promoter of plasmid pUC19 and its effect on transcription. Nucleic Acids Res 1992; 20:1617–1622.

    Article  PubMed  CAS  Google Scholar 

  41. Hirota Y, Ohyama T. Adjacent upstream superhelical writhe influences an Escherichia coli promoter as measured by in vivo strength and in vitro open complex formation. J Mol Biol 1995; 254:566–578.

    Article  PubMed  CAS  Google Scholar 

  42. McAllister CF, Achberger EC. Rotational orientation of upstream curved DNA affects promoter function in Bacillus subtilis. J Biol Chem 1989; 264:10451–10456.

    PubMed  CAS  Google Scholar 

  43. Matsushita C, Matsushita O, Katayama S et al. An upstream activating sequence containing curved DNA involved in activation of the Clostridium perfringens plc promoter. Microbiology 1996; 142:2561–2566.

    Article  PubMed  CAS  Google Scholar 

  44. Asayama M, Hayasaka Y, Kabasawa M, Shirai M, Ohyama A. An intrinsic DNA curvature found in the cyanobacterium Microcystis aeruginosa K-81 affects the promoter activity of rpoD1 encoding a principal σ factor. J Biochem (Tokyo) 1999; 125:460–468.

    PubMed  CAS  Google Scholar 

  45. Hsu LM, Giannini JK, Leung TW et al. Upstream sequence activation of Escherichia coli argT promoter in vivo and in vitro. Biochemistry 1991; 30:813–822.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Q, Albert FG, Fitzgerald DJ et al. Sequence determinants of DNA bending in the ilvlH promoter and regulatory region of Escherichia coli. Nucleic Acids Res 1994; 22:5753–5760.

    Article  PubMed  CAS  Google Scholar 

  47. Agrawal GK, Asayama M, Shirai M. A novel bend of DNA CIT: changeable bending-center sites of an intrinsic curvature under temperature conditions. FEMS Microbiol Lett 1997; 147:139–145.

    Article  PubMed  CAS  Google Scholar 

  48. Asayama M, Kato H, Shibato J et al. The curved DNA structure in the 5′-upstream region of the light-responsive genes: its universality, binding factor and function for cyanobacterial psbA transcription. Nucleic Acids Res 2002; 30:4658–4666.

    Article  PubMed  CAS  Google Scholar 

  49. Groß S, Gase K, Malke H. Localization of the sequence-determined DNA bending center up stream of the streptokinase gene skc. Arch Microbiol 1996; 166:116–121.

    Article  PubMed  Google Scholar 

  50. Pérez-Martín J, Espinosa M. Correlation between DNA bending and transcriptional activation at a plasmid promoter. J Mol Biol 1994; 241:7–17.

    Article  PubMed  Google Scholar 

  51. Kolb A, Busby S, Buc H et al. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 1993; 62:749–795.

    Article  PubMed  CAS  Google Scholar 

  52. Taniguchi T, O’Neill M, de Crombrugghe B. Interaction site of Escherichia coli cyclic AMP receptor protein on DNA of galactose operon promoters. Proc Natl Acad Sci USA 1979; 76:5090–5094.

    Article  PubMed  CAS  Google Scholar 

  53. Taniguchi T, de Crombrugghe B. Interactions of RNA polymerase and the cyclic AMP receptor protein on DNA of the E. coli galactose operon. Nucleic Acids Res 1983; 11:5165–5180.

    Article  PubMed  CAS  Google Scholar 

  54. Lavigne M, Herbert M, Kolb A et al. Upstream curved sequences influence the initiation of transcription at the Escherichia coli galactose operon. J Mol Biol 1992; 224:293–306.

    Article  PubMed  CAS  Google Scholar 

  55. Mizuno T. Static bend of DNA helix at the activator recognition site of the ompF promoter in Escherichia coli. Gene 1987; 54:57–64.

    Article  PubMed  CAS  Google Scholar 

  56. Ross W, Thompson JF, Newlands JT et al. E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 1990; 9:3733–3742.

    PubMed  CAS  Google Scholar 

  57. Gaal T, Rao L, Estrem ST et al. Localization of the intrinsically bent DNA region upstream of the E. coli rrnB P1 promoter. Nucleic Acids Res 1994; 22:2344–2350.

    Article  PubMed  CAS  Google Scholar 

  58. Rojo F, Zaballos A, Salas M. Bend induced by the phage φ29 transcriptional activator in the viral late promoter is required for activation. J Mol Biol 1990; 211:713–725.

    Article  PubMed  CAS  Google Scholar 

  59. Carmona M, Magasanik B. Activation of transcription at σ54-dependent promoters on linear tem plates requires intrinsic or induced bending of the DNA. J Mol Biol 1996; 261:348–356.

    Article  PubMed  CAS  Google Scholar 

  60. Cheema AK, Choudhury NR, Das HK. A-and T-tract-mediated intrinsic curvature in native DNA between the binding site of the upstream activator NtrC and the nifLA promoter of Klebsiella pneumoniae facilitates transcription. J Bacteriol 1999; 181:5296–5302.

    PubMed  CAS  Google Scholar 

  61. Lloubès R, Granger-Schnarr M, Lazdunski C et al. LexA repressor induces operator-dependent DNA bending. J Mol Biol 1988; 204:1049–1054.

    Article  PubMed  Google Scholar 

  62. Lloubès R, Lazdunski C, Granger-Schnarr M et al. DNA sequence determinants of LexA-induced DNA bending. Nucleic Acids Res 1993; 21:2363–2367.

    Article  PubMed  Google Scholar 

  63. Collis CM, Molloy PL, Both GW et al. Influence of the sequence-dependent flexure of DNA on transcription in E. coli. Nucleic Acids Res 1989; 17:9447–9468.

    Article  PubMed  CAS  Google Scholar 

  64. Travers AA. Why bend DNA? Cell 1990; 60:177–180.

    Article  PubMed  CAS  Google Scholar 

  65. Amouyal M, Buc H. Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli. J Mol Biol 1987; 195:795–808.

    Article  PubMed  CAS  Google Scholar 

  66. Coulombe B, Burton ZF. DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms. Microbiol Mol Biol Rev 1999; 63:457–478.

    PubMed  CAS  Google Scholar 

  67. Rivetti C, Guthold M, Bustamante C. Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J 1999; 18:4464–4475.

    Article  PubMed  CAS  Google Scholar 

  68. Diekmann S. Temperature and salt dependence of the gel migration anomaly of curved DNA fragments. Nucleic Acids Res 1987; 15:247–265.

    Article  PubMed  CAS  Google Scholar 

  69. Ohyama T. Bent DNA in the human adenovirus type 2 E1A enhancer is an architectural element for transcription stimulation. J Biol Chem 1996; 271:27823–27828.

    PubMed  CAS  Google Scholar 

  70. Katayama S, Matsushita O, Jung CM et al. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 1999; 18:3442–3450.

    Article  PubMed  CAS  Google Scholar 

  71. Gussin GN. Kinetic analysis of RNA polymerase-promoter interactions. Methods Enzymol 1996;273:45–59.

    Article  PubMed  CAS  Google Scholar 

  72. Ebright RH. RNA polymerase-DNA interaction: structures of intermediate, open, and elongation complexes. Cold Spring Harb Symp Quant Biol 1998; 63:11–20.

    Article  PubMed  CAS  Google Scholar 

  73. Busby S, Spassky A, Chan B. RNA polymerase makes important contacts upstream from base pair-49 at the Escherichia coli galactose operon P1 promoter. Gene 1987; 53:145–152.

    Article  PubMed  CAS  Google Scholar 

  74. McAllister CF, Achberger EC. Effect of polyadenine-containing curved DNA on promoter utilization in Bacillus subtilis. J Biol Chem 1988; 263:11743–11749.

    PubMed  CAS  Google Scholar 

  75. Nickerson CA, Achberger EC. Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters. J Bacteriol 1995; 177:5756–5761.

    PubMed  CAS  Google Scholar 

  76. Ross W, Gosink KK, Salomon J et al. A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase. Science 1993;262:1407–1413.

    Article  PubMed  CAS  Google Scholar 

  77. Estrem ST, Ross W, Gaal T et al. Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase α subunit. Genes Dev 1999; 13:2134–2147.

    Article  PubMed  CAS  Google Scholar 

  78. Gourse RL, Ross W, Gaal T. UPs and clowns in bacterial transcription initiation: the role of the α subunit of RNA polymerase in promoter recognition. Mol Microbiol 2000; 37:687–695.

    Article  PubMed  CAS  Google Scholar 

  79. Ross W, Ernst A, Gourse RL. Fine structure of E. coli RNA polymerase-promoter interactions: α subunit binding to the UP element minor groove. Genes Dev 2001; 15:491–506.

    Article  PubMed  CAS  Google Scholar 

  80. Estrem ST, Gaal T, Ross W et al. Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci USA 1998; 95:9761–9766.

    Article  PubMed  CAS  Google Scholar 

  81. Naryshkin N, Revyakin A, Kim Y et al. Structural organization of the RNA polymerase-promoter open complex. Cell 2000; 101:601–611.

    Article  PubMed  CAS  Google Scholar 

  82. Aiyar SE, Gourse RL, Ross W. Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase α subunit. Proc Natl Acad Sci USA 1998; 95:14652–14657.

    Article  PubMed  CAS  Google Scholar 

  83. Gartenberg MR, Crothers DM. Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. J Mol Biol 1991; 219:217–230.

    Article  PubMed  CAS  Google Scholar 

  84. Borowiec JA, Gralla JD. High-resolution analysis of lac transcription complexes inside cells. Bio chemistry 1986; 25:5051–5057.

    CAS  Google Scholar 

  85. Mekler V, Kortkhonjia E, Mukhopadhyay J et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 2002; 108:599–614.

    Article  PubMed  CAS  Google Scholar 

  86. Murakami KS, Masuda S, Campbell EA et al. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 2002; 296:1285–1290.

    Article  PubMed  CAS  Google Scholar 

  87. Ramstein J, Lavery R. Energetic coupling between DNA bending and base pair opening. Proc Natl Acad Sci USA 1988; 85:7231–7235.

    Article  PubMed  CAS  Google Scholar 

  88. Lozinski T, Adrych-Rozek K, Markiewicz WT et al. Effect of DNA bending in various regions of a consensus-like Escherichia coli promoter on its strength in vivo and structure of the open complex in vitro. Nucleic Acids Res 1991; 19:2947–2953.

    Article  PubMed  CAS  Google Scholar 

  89. Rojo F, Salas M. A DNA curvature can substitute phage φ29 regulatory protein p4 when acting as a transcriptional repressor. EMBO J 1991; 10:3429–3438.

    PubMed  CAS  Google Scholar 

  90. Gralla JD. Promoter recognition and mRNA initiation by Escherichia coli70. Methods Enzymol 1990; 185:37–54.

    Article  PubMed  CAS  Google Scholar 

  91. Hsu LM. Promoter clearance and escape in prokaryotes. Biochim Biophys Acta 2002; 1577:191–207.

    PubMed  CAS  Google Scholar 

  92. Salas M. Control mechanisms of bacteriophage φ29 DNA expression. Int Microbiol 1998; 1:307–310.

    PubMed  CAS  Google Scholar 

  93. Dame RT, Wyman C, Wurm R et al. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J Biol Chem 2002; 277:2146–2150.

    Article  PubMed  CAS  Google Scholar 

  94. Stock JB, Stock AM, Mottonen JM. Signal transduction in bacteria. Nature 1990; 344:395–400.

    Article  PubMed  CAS  Google Scholar 

  95. Claverie-Martin F, Magasanik B. Positive and negative effects of DNA bending on activation of transcription from a distant site. J Mol Biol 1992; 227:996–1008.

    Article  PubMed  CAS  Google Scholar 

  96. Carmona M, Claverie-Martin F, Magasanik B. DNA bending and the initiation of transcription at σ54-dependent bacterial promoters. Proc Natl Acad Sci USA 1997; 94:9568–9572.

    Article  PubMed  CAS  Google Scholar 

  97. Newlands JT, Josaitis CA, Ross W et al. Both fis-dependent and factor-independent upstream activation of the rrnB P1 promoter are face of the helix dependent. Nucleic Acids Res 1992; 20:719–726.

    Article  PubMed  CAS  Google Scholar 

  98. Yamada H, Muramatsu S, Mizuno T. An Escherichia coli protein that preferentially binds to sharply curved DNA. J Biochem (Tokyo) 1990; 108:420–425.

    CAS  Google Scholar 

  99. Ueguchi C, Kakeda M, Yamada H et al. An analogue of the DnaJ molecular chaperone in Escherichia coli. Proc Natl Acad Sci USA 1994; 91:1054–1058.

    Article  PubMed  CAS  Google Scholar 

  100. Azam TA, Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 1999; 274:33105–33113.

    Article  PubMed  CAS  Google Scholar 

  101. Spassky A, Rimsky S, Garreau H et al. H1a, an E. coli DNA-binding protein which accumulates in tationary phase, strongly compacts DNA in vitro. Nucleic Acids Res 1984; 12:5321–5340.

    Article  PubMed  CAS  Google Scholar 

  102. Spurio R, Durrenberger M, Falconi M et al. Lethal overproduction of the Escherichia coli nucleoid rotein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 1992; 231:201–211.

    PubMed  CAS  Google Scholar 

  103. Atlung T, Ingmer H. H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 1997; 24:7–17.

    Article  PubMed  CAS  Google Scholar 

  104. Beloin C, Jeusset J, Révet B et al. Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J Biol Chem 2003; 278:5333–5342.

    Article  PubMed  CAS  Google Scholar 

  105. Horikoshi M, Bertuccioli C, Takada R et al. Transcription factor TFIID induces DNA bending upon binding to the TATA element. Proc Natl Acad Sci USA 1992; 89:1060–1064.

    Article  PubMed  CAS  Google Scholar 

  106. van der Vliet PC, Verrijzer CP. Bending of DNA by transcription factors. Bioessays 1993; 15:25–32.

    Article  PubMed  Google Scholar 

  107. Werner MH, Gronenborn AM, Clore GM. Intercalation, DNA kinking, and the control of transcription. Science 1996; 271:778–784.

    Article  PubMed  CAS  Google Scholar 

  108. Zhou Y, Zhang X, Ebright RH. Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc Natl Acad Sci USA 1993; 90:6081–6085.

    Article  PubMed  CAS  Google Scholar 

  109. Heyduk T, Lee JC, Ebright YW et al. CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature 1993; 364:548–549.

    Article  PubMed  CAS  Google Scholar 

  110. Kapanidis AN, Ebright YW, Ludescher RD et al. Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution. J Mol Biol 2001; 312:453–468.

    Article  PubMed  CAS  Google Scholar 

  111. Azam TA, Hiraga S, Ishihama A. Two types of localization of the DNA-binding proteins within the Escherichia coli nudeoid. Genes Cells 2000; 5:613–626.

    Article  PubMed  CAS  Google Scholar 

  112. Goosen N, van de Putte P. The regulation of transcription initiation by integration host factor. Mol Microbiol 1995; 16:1–7.

    Article  PubMed  CAS  Google Scholar 

  113. Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027–1043.

    Article  PubMed  CAS  Google Scholar 

  114. Travers A, Schneider R, Muskhelishvili G. DNA supercoiling and transcription in Escherichia coli: the FIS connection. Biochimie 2001; 83:213–217.

    Article  PubMed  CAS  Google Scholar 

  115. Kuhnke G, Fritz HJ, Ehring R. Unusual properties of promoter-up mutations in the Escherichia coli galactose operon and evidence suggesting RNA polymerase-induced DNA bending. EMBO J 1987; 6:507–513.

    PubMed  CAS  Google Scholar 

  116. Kuhnke G, Theres C, Fritz HJ et al. RNA polymerase and gal repressor bind simultaneously and with DNA bending to the control region of the Escherichia coli galactose operon. EMBO J 1989; 8:1247–1255.

    PubMed  CAS  Google Scholar 

  117. Pérez-Martín J, del Solar GH, Lurz R et al. Induced bending of plasmid pLS1 DNA by the plasmid-encoded protein RepA. J Biol Chem 1989; 264:21334–21339.

    PubMed  Google Scholar 

  118. Pérez-Martín J, Espinosa M. The RepA repressor can act as a transcriptional activator by inducing DNA bends. EMBO J 1991; 10:1375–1382.

    PubMed  Google Scholar 

  119. Ansari AZ, Chael ML, O’Halloran TV. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 1992; 355:87–89.

    Article  PubMed  CAS  Google Scholar 

  120. Wang L, Winans SC. High angle and ligand-induced low angle DNA bends incited by OccR lie in the same plane with OccR bound to the interior angle. J Mol Biol 1995;253:32–38.

    Article  PubMed  CAS  Google Scholar 

  121. Tian G, Lim D, Carey J et al. Binding of the arginine repressor of Escherichia coli K-12 to its operator sites. J Mol Biol 1992; 226:387–397.

    Article  PubMed  CAS  Google Scholar 

  122. Zinkel SS, Crothers DM. Catabolite activator protein-induced DNA bending in transcription initiation. J Mol Biol 1991; 219:201–215.

    Article  PubMed  CAS  Google Scholar 

  123. Bracco L, Kotlarz D, Kolb A et al. Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 1989; 8:4289–4296.

    PubMed  CAS  Google Scholar 

  124. Pérez-Martín J, Timmis KN, de Lorenzo V. Co-regulation by bent DNA. Functional substitutions of the integration host factor site at σ54-dependent promoter Pu of the upper-TOL operon by intrinsically curved sequences. J Biol Chem 1994; 269:22657–22662.

    PubMed  Google Scholar 

  125. Pagel JM, Winkelman JW, Adams CW et al. DNA topology-mediated regulation of transcription initiation from the tandem promoters of the ilvGMEDA operon of Escherichia coli. J Mol Biol 1992; 224:919–935.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Asayama, M., Ohyama, T. (2005). Curved DNA and Prokaryotic Promoters. In: DNA Conformation and Transcription. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-29148-2_3

Download citation

Publish with us

Policies and ethics