Skip to main content

Milk Fat: Origin of Fatty Acids and Influence of Nutritional Factors Thereon

  • Chapter
Advanced Dairy Chemistry Volume 2 Lipids

Abstract

Ruminant milk fat is of unique composition among terrestrial mammals, due to its great diversity of component fatty acids. The diversity arises from the effects of ruminal biohydrogenation on dietary unsaturated fatty acids and the range of fatty acids synthesized de novo in the mammary gland.

Forty to sixty per cent of milk fatty acids are long-chain (predominantly C18) fatty acids derived from the diet, dependent on the amount of fat in the diet. Fatty acids from C4 to C14 are synthesized de novo in the mammary gland whereas C16 arises from both diet and de novo synthesis.

Milk fat is the most variable component of milk, both in concentration and composition. In dairy cattle, both the concentration and composition of milk fat are influenced by the diet. Concentration is reduced by feeding diets that contain large proportions of readily-fermentable carbohydrates (starch) and unsaturated fat. Conversely, the percentage of fat in milk can be increased by feeding rumen-inert fats. In ruminants, in contrast with non-ruminants, dietary fats have little effect on milk fat composition. Nevertheless, subtle changes in composition and manufacturing functionality can be effected by feeding different fats. Those fatty acids synthesized de novo, especially C12 to C16, and oleic acid (C18:1) show greatest variation when supplemental fats are fed.

Modern developments in the manufacture of rumen-protected and rumen-inert fats, together with increased understanding of ruminal and animal lipid metabolism, provide considerable flexibility in manipulation of the composition of milk fat for specific nutritional and manufacturing needs.

Future advances in the science of milk fat and nutrition will come from focusing on the unique biological properties of minor milk fatty acids arising from ruminal biohydrogenation and possibly some of de novo mammary origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • AbuGhazaleh, A.A., Schingoethe, D.J., Hippen, A.R., Kalscheur, K.F., Whitlock, L.A. 2002. Fatty acid profiles of milk and rumen digesta from cows fed fish oil, extruded soybeans or their blend. J. Dairy Sci. 85, 2266–2276.

    CAS  Google Scholar 

  • Ahnadi, C.E., Beswick, N., Delbecchi, L., Kennelly, J.J., Lacasse, P. 2002. Addition of fish oil to diets for dairy cows. II. EVects on milk fat and gene expression of mammary lipogenic enzymes. J. Dairy Res. 69, 521–531.

    Article  CAS  Google Scholar 

  • Ahrné L., Björck, L., Raznikiewicz, T., Claesson, O. 1980. Glycerol ether in colostrum and milk from cow, goat, pig and sheep. J. Dairy Sci. 63, 741–745.

    Google Scholar 

  • Allred, J.B., Reilly, K.E. 1997. Short-term regulation of acetyl CoA carboxylase in tissues of higher animals. Prog. Lipid. Res. 35, 371–385.

    Article  Google Scholar 

  • Annison, E.F., Linzell, J.L., Fazakerley, S., Nichols, B.W. 1967. The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk-fat synthesis. Biochem. J. 102, 637–647.

    CAS  Google Scholar 

  • Ashes, J.R., St. Vincent Welch, P., Gulati, S.K., Scott, T.W., Brown, G.H., Blakeley, S. 1992. Manipulation of the fatty acid composition of milk by feeding protected canola seeds. J. Dairy Sci. 75, 1090–1096.

    CAS  Google Scholar 

  • Baldwin, R.L 1995. Modeling Ruminant Digestion and Metabolism, pp. 370–387, Chapman and Hall, London.

    Google Scholar 

  • Baldwin, R.L., Smith, N.E., Taylor, J., Sharp, M. 1980. Manipulating metabolic parameters to improve growth rate and milk secretion. J. Anim. Sci. 51, 1416–1428.

    CAS  Google Scholar 

  • Ballard, F.J., Hanson, R.W., Kronfeld, D.S. 1969. Gluconeogenesis and lipogenesis in tissue from ruminant and nonruminant animals. Fed. Proc. 28, 218–231.

    CAS  Google Scholar 

  • Banks, W., Clapperton, J.L., Ferrie, M.E. 1976. Effect of feeding fat to dairy cows receiving a fat-deficient basal diet. II. Fatty acid composition of the milk fat. J. Dairy Res. 43, 219–227.

    CAS  Google Scholar 

  • Barbano, D.M., Sherbon, J.W. 1980. Polyunsaturated protected lipid: Effect on triglyceride molecular weight distribution. J. Dairy Sci. 63, 731–740.

    CAS  Google Scholar 

  • Barber, M.C., Clegg, R.A., Travers, M.T., Vernon, R.G. 1997. Review. Lipid metabolism in the lactating mammary gland. Biochim. Biophys. Acta 1347, 101–126.

    CAS  Google Scholar 

  • Bauman, D.E., Currie, W.B. 1980. Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63, 1514–1529.

    CAS  Google Scholar 

  • Bauman, D.E., Davis, C.L. 1974. Biosynthesis of milk fat. In: Lactation, Vol. II (B.L. Larson, V.R. Smith, eds.), pp. 31–75, Academic Press, New York.

    Google Scholar 

  • Bauman, D.E., Griinari, J.M. 2001. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livestk. Prod. Sci. 70, 15–29.

    Article  Google Scholar 

  • Bauman, D.E., Griinari, J.M. 2003. Nutritional regulation of milk fat synthesis. Ann. Rev. Nutr. 23, 203–227.

    Article  CAS  Google Scholar 

  • Bauman, D.E., Brown, R.E., Davis, C.L. 1970. Pathways of fatty acid synthesis and reducing equivalent generation in mammary gland of rat, sow, and cow. Arch. Biochem. Biophys. 140, 237–244.

    Article  CAS  Google Scholar 

  • Baumgard, L.H., Corl, B.A., Dwyer, D.A., Saebø, A., Bauman, D.E. 2000. Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am. J. Physiol. 278, R179–184.

    CAS  Google Scholar 

  • Beaulieu, A.D., Palmquist, D.L. 1995. Differential effects of high fat diets on fatty acid composition in milk of Jersey and Holstein cows. J. Dairy Sci. 78, 1336–1344.

    CAS  Google Scholar 

  • Bernard, L., Leroux, C., Hayes, H., Gautier, M., Chilliard, Y., Martin, P. 2001. Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3′-UTAR sequence arising from a single exon. Gene. 281, 53–61.

    Article  CAS  Google Scholar 

  • Bernert, J.T., Jr., Sprecher, H. 1979. Factors regulating the elongation of palmitic and stearic acid by rat liver microsomes. Biochim. Biophys. Acta 574, 18–24.

    CAS  Google Scholar 

  • Bickerstaffe, R., Annison, E.F. 1970. The desaturase activity of goat and sow mammary tissue. Comp. Biochem. Physiol. 35, 653–665.

    Article  CAS  Google Scholar 

  • Bickerstaffe, R., Annison, E.F. 1971. Triglyceride synthesis in goat and sow mammary tissue. Int. J. Biochem. 2, 153–162.

    Article  CAS  Google Scholar 

  • Bickerstaffe, R., Annison, E.F. 1974. The metabolism of glucose, acetate, lipids and amino acids in lactating dairy cows. J. Agric. Sci., Camb. 82, 71–85.

    Google Scholar 

  • Bishop, C., Davies, T., Glascock, R.F., Welch, V.A. 1969. A further study of bovine serum lipoproteins and an estimation of their contribution to milk fat. Biochem. J. 113, 629–633.

    CAS  Google Scholar 

  • Bitman, J., Wood, D. L. 1990. Changes in milk fat phospholipids during lactation. J. Dairy Sci. 73, 1208–1216.

    CAS  Google Scholar 

  • Bitman, J., Dryden, L.P., Goering, H.K., Wrenn, T.R., Yoncoskie, R.A., Edmondson, L.F. 1973. Efficiency of transfer of polyunsaturated fats into milk. J. Am. Oil Chem. Soc. 50, 93–98.

    CAS  Google Scholar 

  • Blanchette-Mackie, E.J., Amende, L.M. 1987. Electron microscopic visualization of fatty acids in tissues. J. Elec. Micros. Tech. 7, 205–221.

    Article  CAS  Google Scholar 

  • Borthwick, A.C., Edgell, N.J., Denton, R.M. 1987. Use of rapid gel-permeation chromatography to explore the inter-relationships between polymerization, phosphorylation and activity of acetyl-CoA carboxylase. Effects of insulin and phosphorylation by cyclic AMP-dependent protein kinase. Biochem. J. 241, 773–782.

    CAS  Google Scholar 

  • Borthwick, A.C., Edgell, N.J., Denton, R.M. 1990 Protein-serine kinase from rat epididymal adipose tissue which phosphorylates and activates acetyl-CoA carboxylase. Possible role in insulin action. Biochem. J. 270, 795–801.

    CAS  Google Scholar 

  • Brownsey, R.W., Denton, R.M. 1982. Evidence that insulin activates fat-cell acetyl-CoA carboxylase by increased phosphorylation at a specific site. Biochem. J. 202, 77–86.

    CAS  Google Scholar 

  • Cant, J.P., DePeters, E.J., Baldwin, R.L. 1993. Mammary uptake of energy metabolites in dairy cows fed fat and its relationship to milk protein depression. J. Dairy Sci. 76, 2254–2265.

    CAS  Google Scholar 

  • Carlson, C.A., Kim, K.H. 1974. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. Arch. Biochem. Biophys. 164, 478–489.

    Article  CAS  Google Scholar 

  • Castberg, H.B., Egelrud, T., Solberg, P., Olivecrona, T. 1975. Lipases in bovine milk and the relationship between the lipoprotein lipase and tributyrate hydrolyzing activities in cream and skim-milk. J. Dairy Res. 42, 255–266.

    Article  CAS  Google Scholar 

  • Chaiyabutr, N., Faulkner, A., Peaker, M. 1980. The utilization of glucose for the synthesis of milk components in the fed and starved lactating goat in vivo. Biochem. J. 186, 301–308.

    CAS  Google Scholar 

  • Chang, J.H.P., Lunt, D.K., Smith, S.B. 1992. Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. J. Nutr. 122, 2074–2080.

    CAS  Google Scholar 

  • Chilliard, Y., Ferlay, A., Doreau, M. 2001. Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livstk. Prod. Sci. 70, 31–48.

    Article  Google Scholar 

  • Chilliard, Y., Ferlay, A., Mansbridge, R.M., Doreau, M. 2000. Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 49, 181–205.

    Article  CAS  Google Scholar 

  • Choi, Y., Kim, Y-C., Han, Y-B., Park, Y., Pariza, M.W., Ntambi, J.M. 2000. The trans-10, cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. J. Nutr. 130, 1920–1924.

    CAS  Google Scholar 

  • Chouinard, P.Y., Girard, V., Brisson, G.J. 1997. Lactational response of cows to different concentrations of calcium salts of canola oil fatty acids with or without bicarbonates. J. Dairy Sci. 80, 1185–1193.

    Article  CAS  Google Scholar 

  • Chouinard, P.W., Girard, V., Brisson, G.J. 1998. Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. J. Dairy Sci. 81, 471–481.

    Article  CAS  Google Scholar 

  • Christie, W.W. 1985. Structure of the triacyl-sn-glycerols in the plasma and milk of the rat and rabbit. J. Dairy Res. 52, 219–222.

    CAS  Google Scholar 

  • Clarenburg, R., Chaikoff, I.L. 1966. Origin of milk cholesterol in the rat: dietary versus endogenous sources. J. Lipid Res. 7, 27–37.

    CAS  Google Scholar 

  • Clegg, R.A., Barber, M.C., Pooley, L., Ernens, L., Larondelle, Y., Travers, M.T. 2001. Milk fat synthesis and secretion: molecular and cellular aspects. Livstk. Prod. Sci. 70, 3–14.

    Article  Google Scholar 

  • Coleman, R.A., Lee, D.P. 2004. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176.

    Article  CAS  Google Scholar 

  • Coleman, R.A., Lewin, T.M., Muoio, D.M. 2000. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Ann. Rev. Nutr. 20, 77–103.

    Article  CAS  Google Scholar 

  • Coleman, R.A., Lewin, T.M., Van Horn, C.G., Gonzalez-Baró, M.R. 2002. Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J. Nutr. 132, 2123–2126.

    CAS  Google Scholar 

  • Cooper, S.M., Grigor, M.R. 1980. Fatty acid specificities of microsomal acyltransferases esterifying positions-1 and-2 of acylglycerols in mammary glands from lactating rats. Biochem. J. 187, 289–295.

    CAS  Google Scholar 

  • Corl, B.A., Baumgard, L.H., Griinari, J.M., Delmonte, P., Morehouse, K.M., Yurawecz, N.P., Bauman, D.E. 2002. Trans-7, cis-9 CLA is synthesized endogenously by Δ-9 desaturase in dairy cows. Lipids. 37, 681–688.

    Article  CAS  Google Scholar 

  • Crabtree, B., Taylor, D.J., Coombs, J.E., Smith, R.A., Templer, S.P., Smith, G.H. 1981. The activities and intracellular distributions of enzymes of carbohydrate, lipid and ketone-body metabolism in lactating mammary glands from ruminants and non-ruminants. Biochem. J. 196, 747–756.

    CAS  Google Scholar 

  • Curtis, A., Carlson, C.A., Kim, K.H. 1973. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J. Biol. Chem. 248, 378–380.

    Google Scholar 

  • Davis, C.L., Brown, R.E. 1970. Low-fat milk syndrome. In: Physiology of Digestion and Metabolism in the Ruminant (A.T. Phillipson, ed.), pp. 545–565, Oriel Press, Newcastleupon-Tyne, England.

    Google Scholar 

  • DePeters, E.J., Medrano, J.F., Reed, B.A. 1995. Fatty acid composition of milk fat from three breeds of dairy cattle. Can. J. Anim. Sci. 75, 267–269.

    CAS  Google Scholar 

  • Dhiman, T.R., Anand, G.R., Satter, L.D., Pariza, M.W. 1999. Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci. 82, 2146–2156.

    CAS  Google Scholar 

  • Dils, R.R. 1986. Comparative aspects of milk fat synthesis. J. Dairy Sci. 69, 904–910.

    CAS  Google Scholar 

  • Dodds, P.F., Guzman, M.G.F., Chalberg, S.C., Anderson, G.J., Kumar, S. 1981. Acetoacetyl-CoA reductase activity of lactating bovine mammary fatty acid synthase. J. Biol. Chem. 256, 6282–6290.

    CAS  Google Scholar 

  • Emanuelson, M., Murphy, M., Lindberg, J.-E. 1991. Effects of heat-treated and untreated full-fat rapeseed and tallow on rumen metabolism, digestibility, milk composition and milk yield in lactating cows. Anim. Feed Sci. Technol. 34, 291–309.

    Article  Google Scholar 

  • Enjalbert, F., Nicot, M.-C., Bayourthe, C., Moncoulon, R. 1998. Duodenal infusions of palmitic, stearic or oleic acids differently affect mammary gland metabolism of fatty acids in lactating dairy cows. J. Nutr. 128, 1525–1532.

    CAS  Google Scholar 

  • Faulkner, A., Pollock, H.T. 1989. Changes in the concentration of metabolites in milk from cows fed on diets supplemented with soyabean oil or fatty acids. J. Dairy Res. 56, 179–183.

    Google Scholar 

  • Fearon, A.M. 2001. Optimising milkfat composition and processing properties. Aust. J. Dairy Technol. 56, 104–108.

    CAS  Google Scholar 

  • Fearon, A.M., Mayne, C.S., Beattie, J.A.M., Bruce, D.W. 2004. Effect of level of oil inclusion in the diet of dairy cows at pasture on animal performance and milk composition and properties. J. Sci. Food. Agr. 84, 497–504.

    Article  CAS  Google Scholar 

  • Forsberg, N.E., Baldwin, R.L., Smith, N.E. 1985. Roles of lactate and its interactions with acetate in maintenance and biosynthesis in bovine mammary tissue. J. Dairy Sci. 68, 2550–2556.

    CAS  Google Scholar 

  • Garton, G.A. 1963. The composition and biosynthesis of milk lipids. J. Lipid Res. 4, 237–254.

    CAS  Google Scholar 

  • German, J.B., Morand, L., Dillard, C.J., Xu, R. 1997. Milk fat composition: Targets for alteration of function and nutrition. In: Milk Composition, Production and Biotechnology (R.A.S. Welch, D.J.W. Burns, S.R Davis, A.I. Popay, C.G. Prosser, eds.), pp. 35–72, CAB International, Wallingford, UK.

    Google Scholar 

  • Giesy, J.G., McGuire, M.A., Shafii, B., Hanson, T.W. 2002. Effect of dose of calcium salts of conjugated linoleic acid (CLA) on percentage and fatty acid content of milk fat in mid-lactation Holstein cows. J. Dairy Sci. 85, 2023–2029.

    CAS  Google Scholar 

  • Glascock, R.F., Duncombe, W.G., Reinius, L.R. 1956. Studies on the origin of milk fat. 2. The secretion of dietary long-chain fatty acids in milk fat by ruminants. Biochem. J. 62, 535–541.

    CAS  Google Scholar 

  • Glascock, R.F., Smith, R.W., Walsh, A. 1983. Partition of circulating triglycerides between formation of milk fat and other metabolic pathways in sheep. J. Agric. Sci. Camb. 101, 33–38.

    CAS  Google Scholar 

  • Glascock, R.F., Welch, V.A., Bishop, C., Davies, T., Wright, E.W., Noble, R.C. 1966. An investigation of serum lipoproteins and of their contribution to milk fat in the dairy cow. Biochem. J. 98, 149–156.

    CAS  Google Scholar 

  • Goldberg, I.J. 1996. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37, 693–707.

    CAS  Google Scholar 

  • Griinari, J.M., Dwyer, D.A., McGuire, M.A., Bauman, D.E., Palmquist, D.L., Nurmela, K.V.V. 1998. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 81, 1251–1261.

    CAS  Google Scholar 

  • Griinari, J.M., McGuire, M.A., Dwyer, D.A., Bauman, D.E., Palmquist, D.L. 1997. Role of insulin in the regulation of milk fat synthesis in dairy cows. J. Dairy Sci. 80, 176–1084.

    Google Scholar 

  • Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M., Snell, R. 2001. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 12, 222–231.

    Article  CAS  Google Scholar 

  • Grummer, R.R. 1991. Effect of feed on the composition of milk fat. J. Dairy Sci. 74, 3244–3257.

    CAS  Google Scholar 

  • Grunnet, I., Knudsen, J. 1981. Direct transfer of fatty acids synthesized ‘de novo’ from fatty acid synthetase into triacylglycerols without activation. Biochem. Biophys. Res. Com. 100, 629–636.

    Article  CAS  Google Scholar 

  • Ha, J.K., Lindsay, R.C. 1990. Method for the quantitative analysis of volatile free and total branched-cahin fatty acids in cheese and milk fat. J. Dairy Sci. 73, 1988–1999.

    Article  CAS  Google Scholar 

  • Hagemeister, H., Precht, D., Franzen, M., Barth, C.A. 1991. α-Linolenic acid transfer into milk fat and its elongation by cows. Fett Wiss. Technol. 93, 387–391.

    Article  CAS  Google Scholar 

  • Hajri, T., Abumrad, N.A. 2002. Fatty acid transport across membranes: Relevance to nutrition and metabolic pathology. Ann. Rev. Nutr. 22, 383–415.

    Article  CAS  Google Scholar 

  • Hamosh, M., Clary, T.R., Chernick, W.W., Scow, R.O. 1970. Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim. Biophys. Acta 210, 473–482.

    CAS  Google Scholar 

  • Hansen, H.O. and Knudsen, J. 1987. Effect of exogenous long-chain fatty acids on individual fatty acid synthesis by dispersed ruminant mammary gland cells. J. Dairy Sci. 70, 1350–1354.

    CAS  Google Scholar 

  • Hansen, H.O., Grunnet, I. and Knudsen, J. 1984a. Triacylglycerol synthesis in goat mammary gland. The effect of ATP, Mg2+ and glycerol 3-phosphate on the esterification of fatty acids synthesized de novo. Biochem J. 220, 513–519.

    CAS  Google Scholar 

  • Hansen, H.O., Grunnet, I., Knudsen, J. 1984b. Triacylglycerol synthesis in goat mammary gland. Factors influencing the esterification of fatty acids synthesized de novo. Biochem J. 220, 521–527.

    CAS  Google Scholar 

  • Hansen, H.O., Jensen, S.S., Knudsen, J. 1986. Absence of monoacylglycerol pathway for triacylglycerol synthesis in goat mammary gland. Biochem. J. 238, 173–176.

    CAS  Google Scholar 

  • Hansen, J.K., Knudsen, J. 1980. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of butyrate and hexanoate by lactating cow mammary gland fatty acid synthetase. Biochem. J. 186, 287–294.

    CAS  Google Scholar 

  • Hardie, D.G., Cohen, P. 1979. Dephosphorylation and activation of acetyl-CoA carboxylase from lactating rabbit mammary gland. FEBS Lett. 15, 333–338.

    Article  Google Scholar 

  • Hardie, D.G., Guy, P.S. 1980. Reversible phosphorylation and inactivation of acetyl-CoA carboxylase from lactating rat mammary gland by cyclic AMP-dependent protein kinase. Eur. J. Biochem. 110, 167–177.

    Article  CAS  Google Scholar 

  • Haystead, T.A., Moore, F., Cohen, P., Hardie, D.G. 1990. Roles of the AMP-activated and cyclic-AMP-dependent protein kinases in the adrenaline-induced inactivation of acetyl-CoA carboxylase in rat adipocytes. Eur. J. Biochem. 187, 199–205.

    Article  CAS  Google Scholar 

  • Hermansen, J.E. 1995. Prediction of milk fatty acid profile in dairy cows fed dietary fat differing in fatty acid composition. J. Dairy Sci. 78, 872–879.

    CAS  Google Scholar 

  • Hilditch, T.P. 1947. The Chemical Constitution of Natural Fats, 2nd edn, John Wiley and Sons, London.

    Google Scholar 

  • Hillgartner, F.B., Salati, L.M. and Goodridge, A.G. 1995. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 75, 47–76.

    CAS  Google Scholar 

  • Hoekstra, D., Maier, O., van der Wouden, J.M., Slimane, T.A., van Ijzendoorn, S.C.D. 2003. Membrane dynamics and cell polarity: The role of sphingolipids. J. Lipid Res. 44, 869–877.

    Article  CAS  Google Scholar 

  • Holland, R., Hardie, D.G. 1985. Both insulin and epidermal growth factor stimulate fatty acid synthesis and increase phosphorylation of acetyl-CoA carboxylase and ATP-citrate lyase in isolated hepatocytes. FEBS Lett. 181, 308–312.

    Article  CAS  Google Scholar 

  • Hurtaud, C., Lemosquet, S., Rulquin, H. 2000. Effect of graded duodenal infusions of glucose on yield and composition of milk from dairy cows. 2. Diets based on grass silage. J. Dairy Sci. 83, 2952–2962.

    Article  CAS  Google Scholar 

  • Infante, J.P., Kinsella, J.E. 1976. Phospholipid synthesis in mammary tissue. Choline and ethanolamine kinases: Kinetic evidence for two discrete active sites. Lipids 11, 727–735.

    Article  CAS  Google Scholar 

  • Jaros, D., Ginzinger, W., Tschager, E., Leitgeb, R., Rohm, H. 2001. Application of oilseed feeding to reduce firmness of hard cheeses produced in the winter feeding period. Int. Dairy J. 11, 611–619.

    Article  CAS  Google Scholar 

  • Jenkins, T.C. 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76, 3851–3863.

    Article  CAS  Google Scholar 

  • Jenkins, T.C. 1998. Fatty acid composition of milk from Holstein cows fed oleamide or canola oil. J. Dairy Sci. 81, 794–800.

    CAS  Google Scholar 

  • Jenkins, T.C. 1999. Lactation performance and fatty acid composition of milk from Holstein cows fed 0 to 5% oleamide. J. Dairy Sci. 82, 1525–1531.

    CAS  Google Scholar 

  • Jensen, R.G. 2002. Invited Review: The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85, 295–350.

    Article  CAS  Google Scholar 

  • Jensen, R.G., Newburg, D.S. 1995. Milk lipids. B. Bovine milk lipids. In: Handbook of Milk Composition (R.G. Jensen, ed.), pp. 543–575, Academic Press Inc., San Diego.

    Google Scholar 

  • Jones, C.S., Parker, D.S. 1978. Uptake of substrates for milk-fat synthesis by lactating-rabbit mammary-gland. Biochem. J. 174, 291–296.

    CAS  Google Scholar 

  • Jordan, W.H., Jenter, C.G. 1897. The Source of Milk Fat. Bulletin 132, New York Agricultural Experiment Station, Geneva, pp. 455–488.

    Google Scholar 

  • Joshi, A.K., Witkowski, A., Smith, S. 1997. Mapping of functional interactions between domains of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry 36, 2316–2322.

    Article  CAS  Google Scholar 

  • Karijord, Ø., Standal, N., Syrstad, O. 1982. Sources of variation in composition of milk fat. Z. Tierzuüchtg. Zuüchtgsbiol. 99, 81–93.

    CAS  Google Scholar 

  • Katz, J., Wals, P.A. 1972. Pentose cycle and reducing equivalents in rat mammary-gland slices. Biochem. J. 128, 879–899.

    CAS  Google Scholar 

  • Kaupe, B., Winter, A., Fries, R., Erhardt, G. 2004. DGAT1 polymorphism in Bos indicus and Bos Taurus cattle breeds. J. Dairy Res. 71, 182–187.

    Article  CAS  Google Scholar 

  • Kelsey, J.A., Corl, B.A., Collier, R.J., Bauman, D.E. 2003. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 86, 2588–2597.

    Article  CAS  Google Scholar 

  • Kennelly, J.J. 1996. The fatty acid composition of milk fat as influenced by feeding oilseeds. Anim. Feed Sci. Technol. 60, 137–152.

    Article  CAS  Google Scholar 

  • Kim, K-H. 1983. Regulation of acetyl-CoA carboxylase. Cur. Top. Cell Regul. 22, 143–176.

    CAS  Google Scholar 

  • Kim, K-H. 1997. Regulation of mammalian acetyl-coenzyme A carboxylase. Ann. Rev. Nutr. 17, 77–99.

    Article  CAS  Google Scholar 

  • Kinsella, J.E. 1968. The incorporation of [14C3] glycerol into lipids by dispersed bovine mammary cells. Biochim. Biophys. Acta 164, 540–549.

    CAS  Google Scholar 

  • Kinsella, J.E. 1970. Stearic acid metabolism by mammary cells. J. Dairy Sci. 53, 1757–1765.

    Article  CAS  Google Scholar 

  • Kinsella, J.E. 1972. Stearyl Co-A as a precursor of oleic acid and glycerolipids in mammary microsomes from lactating bovine: possible regulatory step in milk triglyceride synthesis. Lipids. 7, 349–355.

    Article  CAS  Google Scholar 

  • Kinsella, J.E. 1973. Preferential labeling of phosphatidylcholine during phospholipids synthesis by bovine mammary tissue. Lipids. 8, 393–400.

    Article  CAS  Google Scholar 

  • Kinsella, J.E., Gross, M. 1973. Palmitic acid and initiation of mammary glyceride synthesis via phosphatidic acid. Biochim. Biophys. Acta 316, 109–113.

    CAS  Google Scholar 

  • Kinsella, J.E., Infante, J.P. 1974 Acyl-CoA acyl-sn glycerol-3 phosphorylcholine acyl transferase of bovine mammary tissue. Lipids. 9, 748–751.

    Article  CAS  Google Scholar 

  • Knudsen, J. 1979. Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Biochem. J. 181, 267–274.

    CAS  Google Scholar 

  • Knudsen, J., Grunnet, I. 1980. Primer specificity of mammalian mammary gland fatty acid synthetases. Biochem. Biophys. Res. Comm. 95, 1808–1814.

    Article  CAS  Google Scholar 

  • Knudsen, J., Grunnet, I. 1982. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8 − C12) acyl-CoA esters by goat mammary gland fatty acid synthetase. Biochem. J. 202, 139–143.

    CAS  Google Scholar 

  • Knudsen, J., Neergaard, T.B.F., Gaigg, B., Jensen, M.V., Hansen, J.K. 2000. Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. J. Nutr. 130, 294S–298S.

    CAS  Google Scholar 

  • Korn, E.D. 1962. The lipoprotein lipase of cow’s milk. J. Lipid Res. 3, 246–249.

    CAS  Google Scholar 

  • Laakso, P., Manninen, P., Maäkinen, J., Kallio, H. 1996. Postparturition changes in the triacylglycerols of cow colostrum. Lipids. 31, 937–943.

    Article  CAS  Google Scholar 

  • Laarveld B., Chaplin, R.K. and Brockman, R.P. 1985. Effects of insulin on the metabolism of acetate, beta-hydroxybutyrate and triglycerides by the bovine mammary gland. Comp. Biochem. Physiol. B. 82, 265–267.

    Article  CAS  Google Scholar 

  • LaCount, D.W., Drackley, J.K., Laesch, S.O., Clark, J.H. 1994. Secretion of oleic acid in milk fat in response to abomasal infusions of canola or high oleic sunflower fatty acids. J. Dairy Sci. 77, 1372–1385.

    CAS  Google Scholar 

  • Lee, K.H., Kim, K-H. 1979. Stimulation by epinephrine of in vivo phosphorylation and inactivation of acetyl coenzyme A carboxylase of rat epididymal adipose tissue. J. Biol. Chem. 254, 1450–1453.

    CAS  Google Scholar 

  • Liesman, J.S., Emery, R.S., Akers, R.M., Tucker, H.A. 1988. Mammary lipoprotein lipase in plasma of cows after parturition or prolactin infusion. Lipids 23, 504–507.

    Article  CAS  Google Scholar 

  • Lin, C.Y., Kumar, S. 1972. Pathway for the synthesis of fatty acids in mammalian tissues. J. Biol. Chem. 247, 604–606.

    CAS  Google Scholar 

  • Lin, C.Y., Smith, S., Abraham, S. 1976. Acyl specificity in triglyceride synthesis by lactating rat mammary gland. J. Lipid Res. 17, 647–656.

    CAS  Google Scholar 

  • Lynch, J.M., Barbano, D.M., Bauman, D.E., Hartnell, G.F., Nemeth, M.A. 1992. Effect of a prolonged-release formulation of N-methionyl bovine somatotropin (Sometribove) on milk fat. J. Dairy Sci. 75, 1794–1809.

    Article  CAS  Google Scholar 

  • Mabrouk, G.M., Helmy, I.M., Thampy, K.G., Wakil, S.J. 1990. Acute hormonal control of acetyl-CoA carboxylase. The roles of insulin, glucagon, and epinephrine. J. Biol. Chem. 265, 6330–6338.

    CAS  Google Scholar 

  • McBride, O.W., Korn, E.D. 1963. The lipoprotein lipase of mammary gland and the correlation of its activity to lactation. J. Lipid Res. 4, 17–20.

    CAS  Google Scholar 

  • McBride, O.W., Korn, E.D. 1964. Presence of glycerokinase in guinea pig mammary gland and the incorporation of glycerol into glycerides. J. Lipid Res. 5, 442–447.

    CAS  Google Scholar 

  • McClymont, G.L., Vallance, S. 1962. Depression of blood glycerides and milk fat synthesis by glucose infusion. Proc. Nutr. Soc. 21(2), R41.

    Google Scholar 

  • McDonald, I.W., Scott, T.W. 1977. Foods of ruminant origin with elevated content of polyunsaturated fatty acids. World Rev. Nutr. Diet. 26, 144–207.

    CAS  Google Scholar 

  • Mahfouz, M.M., Valicenti, A.J., Holman, R.T. 1980. Desaturation of isomeric trans-octadecenoic acids by rat liver microsomes. Biochim. Biophys. Acta 618, 1–12.

    CAS  Google Scholar 

  • Mansbridge, R.J., Blake, J.S. 1997. Nutritional factors affecting the fatty acid composition of bovine milk. Br. J. Nutr. 78, S37–S47.

    Article  CAS  Google Scholar 

  • Mao, J., Seyfert, H-M. 2002. Promoter II of the bovine acetyl-coenzyme A carboxylase — alpha-encoding gene is widely expressed and strongly active in different cells. Biochim. Biophys. Acta 1576, 324–329.

    CAS  Google Scholar 

  • Mao, J., Marcos, S., Davis, S.K., Burzlaff, J., Seyfert, H-M. 2001. Genomic distribution of three promoters of the bovine gene encoding acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in the rat. Biochem. J. 358, 127–135.

    Article  CAS  Google Scholar 

  • Mao, J., Molenaar, A.J., Wheeler, T.T., Seyfert, H-M. 2002. Stat5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxlyase a-encoding gene in the mammary gland. J. Mol. Endocrinol. 29, 73–88.

    Article  CAS  Google Scholar 

  • Marshall, M.O., Knudsen, J. 1977. The specificity of 1-acyl-sn-glycerol 3-phosphate acyltransferase in microsomal fractions from lactating cow mammary gland towards short, medium and long chain acyl-CoA esters. Biochim. Biophys. Acta 489, 236–241.

    CAS  Google Scholar 

  • Marshall, M.O., Knudsen, J. 1980. Factors influencing the in vitro activity of diacylglycerol acyltransferase from bovine mammary gland and liver towards butyryl-CoA and palmitoyl-CoA. Biochim. Biophys. Acta 617, 393–397.

    CAS  Google Scholar 

  • Massart-Leen, A.M., DePooter, H., Decloedt, M., Schamp, N. 1981. Composition and variability of the branched-chain fatty acid fraction in the milk of goats and cows. Lipids. 16, 286–292.

    Article  CAS  Google Scholar 

  • Maynard, L.A., McCay, C.M. 1929. The influence of a low-fat diet upon fat metabolism during lactation. J. Nutr. 2, 67–81.

    CAS  Google Scholar 

  • Mellenberger, R.W., Bauman, D.E. 1974. Fatty acid synthesis in rabbit mammary tissue during pregnancy and lactation. Biochem. J. 138, 373–379.

    CAS  Google Scholar 

  • Mellenberger, R.W., Bauman, D.E., Nelson, D.R. 1973. Fatty acid and lactose synthesis in cow mammary tissue. Biochem. J. 136, 741–748.

    CAS  Google Scholar 

  • Mendelson, C.R., Scow, R.O. 1972. Uptake of chylomicron-triglyceride by perfused mammary tissue of lactating rats. Am. J. Physiol. 223, 1418–1423.

    CAS  Google Scholar 

  • Mikkelsen, J., Knudsen, J. 1987. Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem. J. 248, 709–714.

    CAS  Google Scholar 

  • Miller, P.S., Reis, B.L., Calvert, C.C., DePeters, E.J., Baldwin, R.L. 1991. Patterns of nutrient uptake by the mammary glands of lactating dairy cows. J. Dairy Sci. 74, 3791–3799.

    Article  CAS  Google Scholar 

  • Molenaar, A., Mao, J., Oden, K., Seyfert, H-M. 2003. All three promoters of the actetylcoenzyme A-carboxylase α-encoding gene are expressed in mammary cells of ruminants. J. Histochem. Cytochem. 51, 1073–1081.

    CAS  Google Scholar 

  • Moore, J.H., Christie, W.W. 1981. Lipid metabolism in the mammary gland of ruminants. In: Lipid Metabolism in Ruminant Animals (W.W. Christie, ed.), pp. 227–277, Pergamon Press, Oxford, UK.

    Google Scholar 

  • Morales, M.S., Palmquist, D.L., Weiss, W.P. 2000. Effects of fat source and copper on unsaturation of blood and milk triacylglycerol fatty acids in Holstein and Jersey cows. J. Dairy Sci. 83, 2105–2111.

    Article  CAS  Google Scholar 

  • Morrison, I.M., Hawke, J.C. 1977a. Triglyceride composition of bovine milk fat with elevated levels of linoleic acid. Lipids. 12, 994–1004.

    Article  CAS  Google Scholar 

  • Morrison, I.M., Hawke, J.C. 1977b. Positional distribution of fatty acids in the triglycerides of bovine milk fat with elevated levels of linoleic acid. Lipids. 12, 1005–1011.

    Article  CAS  Google Scholar 

  • Munday, M.R., Campbell, D.G., Carling, D., Hardie, D.G. 1988. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175, 331–338.

    Article  CAS  Google Scholar 

  • Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W. 1988. Harper’s Biochemistry. 21st edn, Appleton & Lange, Norwalk, CT.

    Google Scholar 

  • Nandedkar, A.K.N., Schirmer, E.W., Pynadath, T.I., Kumar, S. 1969. Biosynthesis of fatty acid in mammary tissue. I. Purification and properties of fatty acid synthetase from lactating-goat mammary tissue. Arch. Biochem. Biophys. 134, 554–562.

    Article  CAS  Google Scholar 

  • Nielsen, M.O., Jakobsen, K. 1994. Changes in mammary uptake of free fatty acids, triglyceride, cholesterol and phospholipid in relation to milk synthesis during lactation in goats. Comp. Biochem. Physiol. 109A, 857–867.

    Article  CAS  Google Scholar 

  • Nielsen, M.O., Madsen, T.G., Hedeboe, A.M. 2001. Regulation of mammary glucose uptake in goats: role of mammary gland supply, insulin, IGF-1 and synthetic capacity. J. Dairy Res. 68, 337–349.

    Article  CAS  Google Scholar 

  • Noble, R.C., Steele, W., Moore, J.H. 1969. The effects of dietary palmitic and stearic acids on milk fat composition in the cow. J. Dairy Res. 36, 375–381.

    CAS  Google Scholar 

  • Ntambi, J.M., Miyazaki, M. 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 43, 91–104.

    Article  CAS  Google Scholar 

  • Oftedal, O.T., Iverson, S.J. 1995. Comparative analysis of nonhuman milks. A. Phylogenetic variation in the gross composition of milks. In: Handbook of Milk Composition (R.G. Jensen, ed.), pp. 749–789, Academic Press, San Diego.

    Google Scholar 

  • Onetti, S.G., Shaver, R.D., McGuire, M.A., Palmquist, D.L., Grummer, R.R. 2002. Effect of supplemental tallow on performance of dairy cows fed diets with different corn silage: alfalfa silage ratios. J. Dairy Sci. 85, 632–641.

    CAS  Google Scholar 

  • Oscar, T.P., Baumrucker, C.R., Etherton, T.D. 1986. Insulin binding to bovine mammary membranes: comparison of microsomes versus smooth membranes. J. Anim. Sci. 62, 179–186.

    CAS  Google Scholar 

  • Palmquist, D.L. 1991. Influence of source and amount of dietary fat on digestibility in lactating cows. J. Dairy Sci. 74, 1354–1360.

    Article  CAS  Google Scholar 

  • Palmquist, D.L., Conrad. H.R. 1971. Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. J. Dairy Sci. 54, 1025–1033.

    Article  CAS  Google Scholar 

  • Palmquist, D.L., Jenkins, T.C. 1980. Fat in lactation rations: review. J. Dairy Sci. 63, 1–14.

    CAS  Google Scholar 

  • Palmquist, D.L., Mattos, W. 1978. Turnover of lipoproteins and transfer to milk fat of dietary (1-Carbon-14) linoleic acid in lactating cows. J. Dairy Sci. 61, 561–565.

    CAS  Google Scholar 

  • Palmquist, D.L., Beaulieu, A.D., Barbano, D.M. 1993. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76, 1753–1771.

    Article  CAS  Google Scholar 

  • Palmquist, D.L., Davis, C.L., Brown, R.E., Sachan, D.S. 1969. Availability and metabolism of various substrates in ruminants. V. Entry rate into the body and incorporation into milk fat of D(-)β-hydroxybutyrate. J. Dairy Sci. 52, 633–638.

    Article  CAS  Google Scholar 

  • Pan, Y.S., Cook, L.J., Scott, T.W. 1972. Formaldehyde-treated casein-safflower oil supplement for dairy cows. I. Effect on milk composition. J. Dairy Res. 39, 203–210.

    CAS  Google Scholar 

  • Parodi, P.W. 1982. Positional distribution of fatty acids in triglycerides from milk of several species of mammals. Lipids. 17, 437–442.

    Article  CAS  Google Scholar 

  • Parodi, P.W. 2003. Anti-cancer agents in milkfat. Aust. J. Dairy Technol. 58, 114–118.

    CAS  Google Scholar 

  • Peterson, D.G., Matitashvili, E.A., Bauman, D.E. 2003. Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. J. Nutr. 133, 3098–3102.

    CAS  Google Scholar 

  • Piperova, L.S., Teter, B.B., Bruckental, I., Sampugna, J., Mills, S.E., Yurawecz, M.P., Fritsche, J., Ku, K., Erdman, R.A. 2000. Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. J. Nutr. 130, 2568–2574.

    CAS  Google Scholar 

  • Ponce-Castaneda, M.V., Lopez-Casillas, F., Kim, K-H. 1991. Acetyl-coenzyme A carboxylase messenger ribonucleic acid metabolism in liver, adipose tissues, and mammary glands during pregnancy and lactation. J. Dairy Sci. 74, 4013–4021.

    Article  CAS  Google Scholar 

  • Popják, G., French, T.H., Folley, S.J. 1951. Utilization of acetate for milk-fat synthesis in the lactating goat. Biochem. J. 48, 411–416.

    Google Scholar 

  • Pullen, D.L., Palmquist, D.L., Emery, R.S. 1989. Effect of days of lactation and methionine hydroxy analog on incorporation of plasma fatty acids into plasma triglycerides. J. Dairy Sci. 72, 49–58.

    CAS  Google Scholar 

  • Raphael, B.C., Patton, S., McCarthy, R.D. 1975a. The serum lipoproteins as a source of milk cholesterol. FEBS Lett. 58, 47–49.

    Article  CAS  Google Scholar 

  • Raphael, B.C., Patton, S., McCarthy, R.D. 1975b. Transport of dietary cholesterol into blood and milk of the goat. J. Dairy Sci. 58, 971–976.

    Article  CAS  Google Scholar 

  • Rasmussen, J.T., Börchers, T., Knudsen, J. 1990. Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem. J. 265, 849–855.

    CAS  Google Scholar 

  • Ridgway, N.D., Byers, D.M., Cook, H.W., Storey, M.K. 1999. Integration of phospholipids and sterol metabolism in mammalian cells. Prog. Lipid Res. 38, 337–360.

    Article  CAS  Google Scholar 

  • Robinson, D.S. 1963. Changes in the lipolytic activity of the guinea pig mammary gland at parturition. J. Lipid Res. 4, 21–23.

    CAS  Google Scholar 

  • Ross, A.C., Rowe, J.F. 1984. Cholesterol esterification by mammary gland microsomes from the lactating rat. Proc. Soc. Exper. Biol. Med. 176, 42–47.

    CAS  Google Scholar 

  • Schauff, D.J., Clark, J.H. 1992. Effects of feeding diets containing calcium salts of long chain fatty acids to lactating dairy cows. J. Dairy Sci. 75, 2990–3002.

    CAS  Google Scholar 

  • Schwertfeger, K.L., McManaman, J.L., Palmer, C.A., Neville, M.C., Anderson, S.M. 2003. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44, 1100–1112.

    Article  CAS  Google Scholar 

  • Scow, R.O., Blanchette-Mackie, E.J., Smith, L.C. 1980. Transport of lipid across capillary endothelium. Fed. Proc. 39, 2610–2617.

    CAS  Google Scholar 

  • Shand, J.H., West, D.W. 1991. Acyl-CoA:Cholesterol acyltransferase activity in the rat mammary gland: Variation during pregnancy and lactation. Lipids. 26, 150–154.

    Article  CAS  Google Scholar 

  • Shennan, D.B., Peaker, M. 2000. Transport of milk constituents by the mammary gland. Physiol. Rev. 80, 925–951.

    CAS  Google Scholar 

  • Shiao, M.S., Drong, R.F., Porter, J.W. 1981. The purification and properties of a protein kinase and the partial purification of a phosphoprotein phosphatase that inactivate and activate acetyl-CoA carboxylase. Biochem. Biophys. Res. Comm. 98, 80–87.

    Article  CAS  Google Scholar 

  • Shingfield, K.J., Ahvenjärvi, S., Toivonen, V., Arölä, A., Nurmela, K.V.V., Huhtanen, P., Griinari, J.M. 2003. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci. 77, 165–179.

    CAS  Google Scholar 

  • Shirley, J.F., Emery, R.S., Convey, E.M., Oxender, W.D. 1973. Enzymic changes in bovine adipose and mammary tissue, serum and mammary tissue hormonal changes with initiation of lactation. J. Dairy Sci. 56, 569–574.

    Article  CAS  Google Scholar 

  • Singh, K., Hartley, D.G., McFadden, T.B., Mackenzie, D.D.S. 2004. Dietary fat regulates mammary stearoyl CoA desaturase expression and activity in lactating mice. J. Dairy Res. 71, 1–6.

    Article  CAS  Google Scholar 

  • Small, C.A., Yeaman, S.J., West, D.W., Clegg, R.A. 1991. Cholesterol ester hydrolysis and hormone-sensitive lipase in lactating rat mammary tissue. Biochim. Biophys. Acta 1082, 251–254.

    CAS  Google Scholar 

  • Smith, G.H., McCarthy, S., Rook, J.A.F. 1974. Synthesis of milk fat from b-hydroxybutyrate and acetate in lactating goats. J. Dairy Res. 41, 175–191.

    CAS  Google Scholar 

  • Smith, S. 1994. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8, 1248–1259.

    CAS  Google Scholar 

  • Smith, S., Witkowski, A., Joshi, A.K. 2003. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42, 289–317.

    Article  CAS  Google Scholar 

  • Smith, S.J., Cases, S., Jensen, D.R., Chen, H.C., Sande, E., Tow, B., Sanan, D.A., Raber, J., Eckel, R.H., Farese, R.V. Jr. 2000. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT 1. Nat. Genet. 25, 87–90.

    Article  CAS  Google Scholar 

  • Storch, J., Thumser, A.E.A. 2000. The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta 1486, 28–44.

    CAS  Google Scholar 

  • Storry, J.E., Hall, A.J., Johnson, V.W. 1971. The effects of increasing amounts of dietary coconut oil on milk-fat secretion in the cow. J. Dairy Res. 38, 73–77.

    CAS  Google Scholar 

  • Stull, J.W., Brown, W.H. 1964. Fatty acid composition of milk. II. Some differences in common dairy breeds. J. Dairy Sci. 47, 1412.

    Article  CAS  Google Scholar 

  • Sutton, J.D. 1989. Altering milk composition by feeding. J. Dairy Sci. 72, 2801–2814.

    Google Scholar 

  • Taniguchi, M., Mannen, H., Oyama, K., Shimakura, Y., Oka, A., Watanabe, H., Kojima, T., Komatsu, M., Harper, G.S., Tsuji, S. 2004. Differences in stearoyl-CoA desaturase mRNA levels between Japanese Black and Holstein cattle. Livestock Prod. Sci. 87, 215–220.

    Article  Google Scholar 

  • Thompson, G.E. 1992. Prolactin and the onset of mammary extraction of plasma triacylglycerols during lactogenesis in the goat. Comp. Biochem. Physiol. 102A, 665–667.

    Article  CAS  Google Scholar 

  • Thompson, G.E., Christie, W.W. 1991. Extraction of plasma triacylglycerols by the mammary gland of the lactating cow. J. Dairy Res. 58, 251–255.

    CAS  Google Scholar 

  • Thomson, A.B.R., Hotke, C.A., O’Brien, B.D., Weinstein, W.M. 1983. Intestinal uptake of fatty acids and cholesterol in four animals species and man: Role of unstirred water layer and bile salt micelle. Comp. Biochem. Physiol. 75A, 221–232.

    Article  CAS  Google Scholar 

  • Timmen, H., Patton, S. 1988. Milk fat globules: Fatty acid composition, size and in vivo regulation of fat liquidity. Lipids 23, 685–689.

    Article  CAS  Google Scholar 

  • Timmons, J.S., Weiss, W.P., Palmquist, D.L., Harper, W.J. 2001. Relationships among dietary roasted soybeans, milk components, and spontaneous oxidized flavor of milk. J. Dairy Sci. 84, 2440–2449.

    CAS  Google Scholar 

  • Torok, E.D., Beitz, D.C., Johnson, D.C., Baldner-Shank, G.L., McGilliard, A.D. 1986. Use of different precursors for lipogenesis in ruminant mammary tissue. Nutr. Res. 6, 1211–1218.

    Article  CAS  Google Scholar 

  • Travers, M.T., Vallance, A.J., Gourlay, H.T., Gill, C.A., Klein, I., Bottema, C.B., Barber, M.C. 2001. Promoter I of the ovine acetyl-CoA carboxylase-alpha gene: an E-box motif at-114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem. J. 359, 273–284.

    Article  CAS  Google Scholar 

  • Vallance, W.S., McClymont, G.L. 1959. Depression in percentage of milk fat by parenteral glucose infusion and glycerol feeding. Nature 183, 466–467.

    Article  CAS  Google Scholar 

  • van Soest, P.J. 1963. Ruminant fat metabolism with particular reference to factors affecting low milk fat and feed effciency. A review. J. Dairy Sci. 46, 204–216.

    Article  Google Scholar 

  • Veerkamp, J.H., Peeters, R.A., Maatman, R.G.H.J. 1991. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim. Biophys. Acta 1081, 1–24.

    CAS  Google Scholar 

  • Vernon, R.G., Faulkner, A., Finley, E., Pollock, H., Taylor, E. 1987. Enzymes of glucose and fatty acid metabolism of liver, kidney, skeletal muscle, adipose tissue and mammary gland of lactating and non-lactating sheep. J. Anim. Sci. 64, 1395–1411.

    CAS  Google Scholar 

  • Vesper, H., Schmelz, E.M., Nikolova-Karakashian, M.N., Dillehay, D.L., Lynch, D.V., Merrill, A.H. Jr. 1999. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr. 129, 1239–1250.

    CAS  Google Scholar 

  • Virtanen, A.I. 1966. Milk production of cows on protein-free feed. Studies of the use of urea and ammonium salts as the sole nitrogen source open new important perspectives. Science 153, 1603–1614.

    Article  CAS  Google Scholar 

  • Ward, A.T., Wittenberg, K.M., Przybylski, R. 2002. Bovine milk fatty acid profiles produced by feeding diets containing solin, flax and canola. J. Dairy Sci. 85, 1191–1196.

    CAS  Google Scholar 

  • Ward, R.J., Travers, M.T., Richards, S.E., Vernon, R.G., Salter, A.M., Buttery, P. J., Barber, M.C. 1998. Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochim. Biophys. Acta 1391, 145–156.

    CAS  Google Scholar 

  • West, C.E., Bickerstaffe, R., Annison, E.F., Linzell, J.L. 1972. Studies on the mode of uptake of blood triglycerides by the mammary gland of the lactating goat. The uptake and incorporation into milk fat and mammary lymph of labeled glycerol, fatty acids and triglycerides. Biochem. J. 126, 477–490.

    CAS  Google Scholar 

  • Williamson, D.H., Munday, M.R., Jones, R.G., Roberts, A.F., Ramsey, A.J. 1983. Short-term dietary regulation of lipogenesis in the lactating mammary gland of the rat. Adv. Enzyme Regul. 21, 135–145.

    Article  CAS  Google Scholar 

  • Winter, A., Krämer, W., Werner, F.A.O., Kollers, S., Kata, S., Durstewitz, G., Buitkamp, J., Womack, J.E., Thaller, G., Fries, R. 2002. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Nat. Acad. Sci. (USA) 99, 9300–9305.

    Article  CAS  Google Scholar 

  • Witters, L.A., Moriarity, D., Martin, D.B. 1979 Regulation of hepatic acetyl coenzyme A carboxylase by insulin and glucagon. J. Biol. Chem. 254, 6644–6649.

    CAS  Google Scholar 

  • Wood, H.G., Peeters, G.J., Verbeke, R., Lauryssens, M., Jacobson, B. 1965. Estimation of the pentose cycle in the perfused cow’s udder. Biochem. J. 96, 607–615.

    CAS  Google Scholar 

  • Yang, Y.T., Baldwin, R.L. 1973. Preparation and metabolism of isolated cells from bovine adipose tissue. J. Dairy Sci. 56, 350–365.

    Article  CAS  Google Scholar 

  • Yang, Z., Liu, S., Chen, X., Chen, H., Huang, M., Zheng, J. 2000. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Can. Res. 60, 505–509.

    CAS  Google Scholar 

  • Zhao, F-Q., Dixon, W.T., Kennelly, J.J. 1996. Localization and gene expression of glucose transporters in bovine mammary gland. Comp. Biochem. Physiol. 115B, 127–134.

    CAS  Google Scholar 

  • Zinder, O., Mendelson, C.R., Blanchette-Mackie, E.J., Scow, R.O. 1976. Lipoprotein lipase and uptake of chylomicron triacylglycerol and cholesterol by perfused rat mammary tissue. Biochim. Biophys. Acta 431, 526–537.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Palmquist, D.L. (2006). Milk Fat: Origin of Fatty Acids and Influence of Nutritional Factors Thereon. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry Volume 2 Lipids. Springer, Boston, MA. https://doi.org/10.1007/0-387-28813-9_2

Download citation

Publish with us

Policies and ethics