Skip to main content

Photonic Technologies for Quantum Information Processing

  • Chapter
Experimental Aspects of Quantum Computing

Abstract

The last several years have seen tremendous progress toward practical optical quantum information processing, including the development of single- and entangled-photon sources and high-efficiency photon counting detectors, covering a range of wavelengths. We review some of the recent progress in the development of these photonic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Gisin et al., Rev. Modern Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  2. A. Migdall, Phys. Today (January, 1999), 41.

    Google Scholar 

  3. S. J. van Enk et al., J. Mod. Opt. 44, 1727 (1997); J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, Phys. Rev. A 59, 4249 (1999); H. Buhrman, R. Cleve, and W. van Dam, SIA M J. Comput. 30, 1829 (2001).

    Article  ADS  Google Scholar 

  4. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

    Article  ADS  Google Scholar 

  5. P. Michler et al., Science 290, 2282 (2000); C. Santori et al., Phys. Rev. Lett. 86, 1502 (2001).

    Article  ADS  Google Scholar 

  6. Z. Yuan et al., Science 295, 102 (2002).

    Article  ADS  Google Scholar 

  7. J. Vuckovic et al., Appl. Phys. Lett. 82, 3596 (2003); C. Santori et al., Nature 419, 594 (2002).

    Article  ADS  Google Scholar 

  8. E. Waks et al., Nature 420, 762 (2002); D. Fattal et al., Phys. Rev. Lett. 92, 037903 (2004).

    Article  ADS  Google Scholar 

  9. M. Pelton et al., Phys. Rev. Lett. 89, 233602 (2002).

    Article  ADS  Google Scholar 

  10. J. Vuckovic and Y. Yamamoto, Appl. Phys. Lett., 82, 2374 (2003).

    Article  ADS  Google Scholar 

  11. L. Brunei, B. Lounis, P. Tamarat, and M. Orrit, Phys. Rev. Lett. 83, 2722 (1999); T.-H. Lee et al., Phys. Rev. Lett. 85, 100 (2004).

    Article  ADS  Google Scholar 

  12. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000); R. Brouri et al., Eur. Phys. J. D 18, 191 (2002); A. Beveratos et al., Phys. Rev. Lett. 89, 187901 (2002).

    Article  ADS  Google Scholar 

  13. A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002); J. McKeever et al., Science 303, 1992 (2004).

    Article  ADS  Google Scholar 

  14. J. H. Shapiro, New J. Phys. 4, 47.1 (2002).

    Article  Google Scholar 

  15. A. Imamoglu, Phys. Rev. Lett. 89, 163602 (2002); D. F. V. James and P. G. Kwiat, Phys. Rev. Lett. 89, 183601 (2002).

    Article  ADS  Google Scholar 

  16. D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).

    Article  ADS  Google Scholar 

  17. C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).

    Article  ADS  Google Scholar 

  18. N. Peters et al., Quant. Inform and Comput. 3, 503–517 (2003); E. Jeffrey, N. A. Peters, and P. G. Kwiat, New J. Phys. 6, 100 (2004).

    MATH  ADS  Google Scholar 

  19. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, Phys. Rev. A 64, 023802 (2001); F. A. Bovino et al., Opt. Commun. 227, 343 (2003).

    Article  ADS  Google Scholar 

  20. S. Takeuchi, Opt. Lett. 26, 843 (2001).

    Article  ADS  Google Scholar 

  21. A. L. Migdall, D. Branning, and S. Castelletto, Phys. Rev. A 66, 053805 (2002).

    Article  ADS  Google Scholar 

  22. T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 66, 42303 (2002); P. G. Kwiat et al., Proc. SPIE 5161, 87 (2004).

    Article  ADS  Google Scholar 

  23. P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).

    Article  ADS  Google Scholar 

  24. P. Trojek, Ch. Schmid, M. Bourennane and H. Weinfurter, Opt. Exp. 12, 276 (2004).

    Article  ADS  Google Scholar 

  25. D. Branning, W. Grice, R. Erdmann, and I. A. Walmsley, Phys. Rev. A 62, 013814 (2000).

    Article  ADS  Google Scholar 

  26. M. Fiorentino et al., quant-ph/0309071; Phys. Rev. A 69, 041801(R) (2004).

    Article  ADS  Google Scholar 

  27. P. G. Kwiat et al., Phys. Rev. A 60, R773 (1999).

    Article  ADS  Google Scholar 

  28. G. Bitton, W. P. Grice, J. Moreau, and L. Zhang Phys. Rev. A 65, 063805 (2002).

    Article  ADS  Google Scholar 

  29. Y.-H. Kim et al., Phys. Rev. A 63, 062301 (2001).

    Article  ADS  Google Scholar 

  30. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, Phys. Rev. Lett. 83, 3103 (1999).

    Article  ADS  Google Scholar 

  31. Y. Nambu et al., Phys. Rev. A 66, 033816 (2002); B.-S. Shi and A. Tomita, Phys. Rev. A 69, 013803 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Tanzilli et al., Electron. Lett. 37, 26 (2001); C. E. Kuklewicz et al., Phys. Rev. A 69, 013807 (2004).

    Article  Google Scholar 

  33. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, Opt. Letts. 26, 1367 (2001); K. Sanaka, K. Kawahara, and T. Kuga, Phys. Rev. Lett. 86, 5620 (2001).

    Article  ADS  Google Scholar 

  34. M. Oberparleiter and H. Weinfurter, Opt. Commun. 183, 133 (2000).

    Article  ADS  Google Scholar 

  35. I. Marcikic et al., Phys. Rev. A 66, 062308 (2002).

    Article  ADS  Google Scholar 

  36. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 312 (2001); N. K. Langford, quant-ph/0312072.

    Article  ADS  Google Scholar 

  37. T. B. Pittman et al., in IEEE J. Selec. Top. Quant. Electron., special issue on “Quantum Internet Technologies” (2003).

    Google Scholar 

  38. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photonics Tech. Lett. 14, 983 (2002).

    Article  ADS  Google Scholar 

  39. X. Li, P. Voss, J. E. Sharping, and P. Kumar, Quant. Electr. and Laser Science Conf., Baltimore, MD, June 1–6, 2003, paper QTuB4 in QELS’03 Technical Digest (Optical Society of America, Washington, D.C. 2003); ibid, quant-ph/0402191.

    Google Scholar 

  40. P. L. Voss and P. Kumar, Opt. Lett. 29, 445 (2004); X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, Opt. Exp. 12, 3737 (2004).

    Article  ADS  Google Scholar 

  41. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).

    Article  ADS  Google Scholar 

  42. C. Santori et al., Phys. Rev. B 66, 045308 (2002).

    Article  ADS  Google Scholar 

  43. J. Vuckovic and Y. Yamamoto, Appl. Phys. Lett. 82, 2374 (2003).

    Article  ADS  Google Scholar 

  44. W. G. Oldham, R. R. Samuelson, and P. Antognetti, IEEE Trans. Electron. Dev. ED-19, 1056 (1972).

    Article  Google Scholar 

  45. http://optoelectronics.perkinelmer.com/

    Google Scholar 

  46. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Phys. Rev. A 68, 043814 (2003); D. Achilles et al., Opt. Lett. 28, 2387 (2003); J. Rehacek et al., quant-ph/0303032 (2003).

    Article  ADS  Google Scholar 

  47. E. Waks, K. Inoue, E. Diamanti, and Y. Yamamoto, quant-ph/0308054 (2003).

    Google Scholar 

  48. P. G. Kwiat et al., Appl. Opt. 33, 1844 (1994).

    Article  ADS  Google Scholar 

  49. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, Appl. Phys. Lett. 74, 902 (1999).

    Article  ADS  Google Scholar 

  50. E. Waks et al., quant-ph/0307162 (2003).

    Google Scholar 

  51. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, Appl. Opt. 35, 2986 (1996); G. Ribordy, J.-D. Gautier, H. Zbinden, and N. Gisin, Appl. Opt. 37, 2272 (1998); P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, Ivair Gontijo, Andrew C. Walker, Paul D. Townsend, and Michael J. Robertson, Appl. Opt. 39, 6818 (2000); J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, Appl. Opt. 39, 6746 (2000); N. Namek-ata, Y. Makino, S. Inoue, Opt. Lett. 27, 954 (2002); A. Tomita and K. Nakamura, Opt. Lett. 27, 1827 (2002); D. S. Bethune, W. P. Risk, and G. W. Pabst, quant-ph/03111120 (2003); P. L. Voss, K. G. Koprulu, S.-K. Choi, S. Dugan, and P. Kumar, J. Mod. Opt. 51, 1369 (2004).

    Article  ADS  Google Scholar 

  52. A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, Appl. Opt. 33, 6902 (1994).

    Article  ADS  Google Scholar 

  53. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, Appl. Phys. Lett. 83, 791 (2003).

    Article  ADS  Google Scholar 

  54. A. Peacock et al., J. Appl. Phys. 81, 7641 (1997).

    Article  ADS  Google Scholar 

  55. G. N. Gol’tsman et al., Appl. Phys. Lett. 79, 705 (2001).

    Article  ADS  Google Scholar 

  56. M. A. Albota and F. N. C. Wong, Opt. Lett. 29, 1449 (2004).

    Article  ADS  Google Scholar 

  57. A. P. VanDevender and P. G. Kwiat, J. Mod. Opt. 51, 1433 (2004).

    Article  MATH  ADS  Google Scholar 

  58. K. R. Parameswaran et al., Opt. Lett. 27, 179 (2002).

    Article  ADS  Google Scholar 

  59. J. M. Huang and P. Kumar, Phys. Rev. Lett. 68, 2153 (1992).

    Article  ADS  Google Scholar 

  60. “Special Issue: Single-photon: detectors, applications, and measurement methods,” A. Migdall and J. Dowling, eds., J. Mod. Opt. 51, 1265–1557 (2004).

    Google Scholar 

  61. “Focus Issue: Single photons on demand,” P. Grangier, B. Sanders, and J. Vuckovic, eds., New J. Phys. 6 (2004). http://www.iop.Org/EJ/abstract/1367-2630/6/l/E04

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kumar, P., Kwiat, P., Migdall, A., Nam, S.W., Vuckovic, J., Wong, F.N.C. (2005). Photonic Technologies for Quantum Information Processing. In: Everitt, H.O. (eds) Experimental Aspects of Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/0-387-27732-3_14

Download citation

Publish with us

Policies and ethics