Skip to main content

Computational Approaches to Cytochrome P450 Function

  • Chapter
Cytochrome P450

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ortiz de Montellano, P.R. (ed.), (1995). Cytochrome P-450: Structures, Mechanism and Biochemistry, 2nd edn. Plenum Press, New York.

    Google Scholar 

  2. Loew, G.H., C.J. Kert, L.M. Hjelmeland, and R.F. Kirchner (1977). Active site models of horseradish peroxidase compound I and a cytochrome P450 analogue: Electronic structure and electric field gradients. J. Am. Chem. Soc. 99, 3534–3536.

    PubMed  CAS  Google Scholar 

  3. Cramer, C.J. (2002). Essentials of Computational Chemistry: Theories and Models. Wiley, Chichester.

    Google Scholar 

  4. Ghosh, A. and P.R. Taylor (2003). High-level ab initio calculations on the energies of low-lying spin states of biologically relevant transition metal complexes: A first progress report. Curr. Opin. Chem. Biol. 7, 113–124.

    PubMed  CAS  Google Scholar 

  5. Lüdemann, S.K., V. Lounnas, and R.C. Wade (2000). How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J. Mol. Biol. 303, 797–811.

    PubMed  Google Scholar 

  6. Lüdemann, S.K., V. Lounnas, and R.C. Wade (2000). How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. J. Mol. Biol. 303, 813–830.

    PubMed  Google Scholar 

  7. Hermans, J. and L. Wang (1997). Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme. J. Am. Chem. Soc. 119, 2707–2714.

    CAS  Google Scholar 

  8. Kairys, V. and M.K. Gilson (2002). Enhanced docking with the mining minima optimizer: Acceleration and side-chain flexibility. J. Comput. Chem. 23, 1656–1670.

    PubMed  CAS  Google Scholar 

  9. Davydov, R., T.M. Makris, V. Kofman, D.E. Werst, S.G. Sligar, and B.M. Hoffman (2001). Hydroxylation of camphor by reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J. Am. Chem. Soc. 123, 1403–1415.

    PubMed  CAS  Google Scholar 

  10. Hata, M., T. Hoshino, and M. Tsuda (2000). An ultimate species in the substrate oxidation process by cytochrome P-450. Chem. Comm. 2037–3038.

    Google Scholar 

  11. Du, P., F.U. Axe, G.H. Loew, S. Canuto, and M.C. Zerner (1991). Theoretical study on the electronic spectra of model Compound II complexes of peroxidases. J. Am. Chem. Soc. 113, 8614–8621.

    CAS  Google Scholar 

  12. Kuramochi, H., L. Noodleman, and D.A. Case (1997). Density functional study on the electronic structures of model peroxidase compounds I and II. J. Am. Chem. Soc. 119, 11442–11451.

    CAS  Google Scholar 

  13. Dawson, J.H., R.H. Holm, J.R. Trudell, G. Barth, R.E. Linder, E. Bunnenberg et al. (1976). Oxidized cytochrome P-450. Magnetic circular dichroism evidence for thiolate ligation in the substrate-bound form. Implications for the catalytic mechanism. J. Am. Chem. Soc. 98, 3707–3709.

    PubMed  CAS  Google Scholar 

  14. Poulos, T.L. (1996). The role of the proximal ligand in heme enzymes. J. Biol. Inorg. Chem. 1, 356–359.

    CAS  Google Scholar 

  15. Schlichting, I., J. Berendzen, K. Chu, A.M. Stock, S.A. Maves, D.E. Benson et al. (2000). The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622.

    PubMed  CAS  Google Scholar 

  16. Loew, G.H. and D.L. Harris (2000). Role of the heme active site and protein environment in structure, spectra, and function of the cytochrome P450s. Chem. Rev. 100, 407–419.

    PubMed  CAS  Google Scholar 

  17. Loew, G.H. (2000). Structure, spectra, and function of heme sites. Int. J. Quantum Chem. 77, 54–70.

    CAS  Google Scholar 

  18. Goller, A.H. and T. Clark (2001). SAM1 semiempirical calculations on the mechanism of cytochrome P450 metabolism. Theochem. 541, 263–281.

    CAS  Google Scholar 

  19. Schöeboom, J.C., H. Lin, N. Reuter, W. Thiel, S. Cohen, F. Ogliaro et al. (2002). The elusive oxidant species of cytochrome P450 enzymes: Characterization by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J. Am. Chem. Soc. 124, 8142–8151.

    Google Scholar 

  20. Miyahara, T., Y. Tokita, and H. Nakatsuji (2001). SAC/SAC-CI study of the ground, excited, and ionized states of cytochromes P450CO. J. Phys. Chem. B 105, 7341–7352.

    CAS  Google Scholar 

  21. Ghosh, A. and T. Wondimagegn (2000). A theoretical study of axial tilting and equatorial asymmetry in metalloporphyrin-nitrosyl complexes. J. Am. Chem. Soc. 122, 8101–8102.

    CAS  Google Scholar 

  22. Wondimagegn, T. and A. Ghosh (2001). A quantum chemical survey of metalloprophyrin-nitrosyl linkage isomers: Insights into the observation of multiple FeNO conformations in a recent crystallographic determination of nitrophorin 4. J. Am. Chem. Soc. 123, 5680–5683.

    PubMed  CAS  Google Scholar 

  23. Ghosh, A. (1998). First-principles quantum chemical studies of porphyrins. Acc. Chem. Res. 31, 189–198.

    CAS  Google Scholar 

  24. Ghosh, A., J. Almlöf, and L. Que Jr. (1994). Density functional theoretical study of oxo(porphyrinato) iron(IV) complexes, models of peroxidase Compounds I and II. J. Phys. Chem. 98, 5576–5579.

    CAS  Google Scholar 

  25. Ghosh, A. and E. Gonzalez (2000). Theoretical studies on high-valent manganese porphyrins: Toward a deeper understanding of the energetics, electron distributions, and structural features of the reactive intermediates of enzymatic and synthetic manganese-catalyzed oxidative processes. Isr. J. Chem. 40, 1–8.

    CAS  Google Scholar 

  26. Harris, D.L. and G.H. Loew (1998). Theoretical investigation of the proton assisted pathway to formation of cytochrome P450 compound I. J. Am. Chem. Soc. 120, 8941–8948.

    CAS  Google Scholar 

  27. Filizola, M. and G.H. Loew (2000). Role of protein environment in horseradish peroxidase compound I formation: Molecular dynamics simulations of horseradish peroxidase-HOOH complex. J. Am. Chem. Soc. 122, 18–25.

    CAS  Google Scholar 

  28. Loew, G.H. and M. Dupuis (1996). Structure of a model transient peroxide intermediate of peroxidases by ab initio methods. J. Am. Chem. Soc. 118, 10584–10587.

    CAS  Google Scholar 

  29. Thomann, H., M. Bernardo, D. Goldfarb, P.M.H. Kroneck, and V. Ullrich (1995). Evidence for water binding to the Fe-center in cytochrome P450cam obtained by 17O electron spin echo envelope modulation spectroscopy. J. Am. Chem. Soc. 117, 8243–8251.

    CAS  Google Scholar 

  30. Collins, J.R., P. Du, and G.H. Loew (1992). Molecular dynamics simulations of the resting and hydrogen peroxide-bound states of cytochrome c peroxidase. Biochemistry 31, 11166–11174.

    PubMed  CAS  Google Scholar 

  31. Harris, D.L. and G.H. Loew (1993). Mechanistic origin of the correlation between spin state and spectra of model cytochrome P450 ferric heme proteins. J. Am. Chem. Soc. 115, 5799–5802.

    CAS  Google Scholar 

  32. Harris, D.L. and G.H. Loew (1993). Determinants of the spin state of the resting state of cytochrome P450cam. J. Am. Chem. Soc. 115, 8775–8779.

    CAS  Google Scholar 

  33. Aissaoui, H., R. Bachmann, A. Schweiger, and W.-D. Woggon (1998). On the origin of the low-spin character of cytochrome P450cam in the resting state-investigations of enzyme models with pulse EPR and ENDOR spectroscopy. Angew. Chem. Int. Ed. 37, 2998–3002.

    CAS  Google Scholar 

  34. Green, M.T. (1998). Role of the axial ligand in determining the spin state of resting cytochrome P450. J. Am. Chem. Soc. 120, 10772–10773.

    CAS  Google Scholar 

  35. Filatov, M., N. Harris, and S. Shaik (1999). A theoretical study of electronic factors affecting hydroxylation by model ferryl complexes of cytochrome P-450 and horseradish peroxidase. J. Chem. Soc. Perkin Trans. 2, 399–410.

    Google Scholar 

  36. De Visser, S.P., D. Kumar, S. Cohen, P.K. Sharma, and S. Shaik (2004, in preparation). A theoretical investigation of the proton-relay mechanisms for the formation of Cpd 0 and Cpd 1 in the catalytic cycle of cytochrome P450.

    Google Scholar 

  37. Scherlis, D.A., C.B. Cymeryng, and D.A. Estrin (2000). Nitric oxide binding to ferric cytochrome P450: A computational study. Inorg. Chem. 39, 2352–2359.

    PubMed  CAS  Google Scholar 

  38. Scherlis, D.A., M.A. Martí P. Ordejón, and D.A. Estrin (2002). Environment effects on chemical reactivity of heme proteins. Int. J. Quantum Chem. 90, 1505–1514.

    CAS  Google Scholar 

  39. Loew, G.H. and M. Dupuis (1997). Characterization of a resting state model of peroxidases by ab initio methods: Optimized geometries, electronic structures, and relative energies of the sextet, quartet, and doublet spin states. J. Am. Chem. Soc. 119, 9848–9851.

    CAS  Google Scholar 

  40. Ogliaro, F., S.P. De Visser, and S. Shaik (2002). The “push” effect of the thiolate ligand in cytochrome P450: A theoretical gauging. J. Inorg. Biochem. 91, 554–567.

    PubMed  CAS  Google Scholar 

  41. Sligar, S.G. (1976). Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 15, 5399–5406.

    PubMed  CAS  Google Scholar 

  42. Auclair, K., P. Moenne-Loccoz, and P.R. Oritz de Montellano (2001). Role of the proximal heme thiolate ligand in cytochrome P450cam. J. Am. Chem. Soc. 123, 4877–4885.

    PubMed  CAS  Google Scholar 

  43. Yamamoto, S. and H. Kashiwagi (1989). CASSCF study on the Fe-O2 bond in a dioxygen heme complex. Chem. Phys. Lett. 161, 85–89.

    CAS  Google Scholar 

  44. Harris, D.L., G.H. Loew, and L. Waskell (1998). Structure and spectra of ferrous dioxygen and reduced ferrous dioxygen model cytochrome P450. J. Am. Chem. Soc. 120, 4308–4318.

    CAS  Google Scholar 

  45. Chottard, G., M. Schappacher, L. Ricard, and R. Weiss (1984). Resonance Raman spectra of iron(II) cytochrome P450 model complexes: Influence of the thiolate ligand. Inorg. Chem. 23, 4557–4561.

    CAS  Google Scholar 

  46. Harris, D.L. and G.H. Loew (1994). A role for Thr252 in cytochrome P450cam oxygen activation. J. Am. Chem. Soc. 116, 11671–11674.

    PubMed  CAS  Google Scholar 

  47. Harris, D.L. and G.H. Loew (1996). Investigation of the proton-assisted pathway to formation of the catalytically active, ferryl species of P450s by molecular dynamics studies of P450eryF. J. Am. Chem. Soc. 118, 6377–6387.

    PubMed  CAS  Google Scholar 

  48. Guallar, V., D.L. Harris, V.S. Batista, and W.H. Miller (2002). Proton-transfer dynamics in the activation of cytochrome P450eryF. J. Am. Chem. Soc. 124, 1430–1437.

    PubMed  CAS  Google Scholar 

  49. Kamachi, T. and K. Yoshizawa (2003). A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome P450. J. Am. Chem. Soc. 125, 4652–4661.

    PubMed  CAS  Google Scholar 

  50. Aikens, J. and S.G. Sligar (1994). Kinetic solvent isotope effects during oxygen activation by cytochrome P-450cam. J. Am. Chem. Soc. 116, 1143–1144.

    CAS  Google Scholar 

  51. Harris, D.L. (2002). Oxidation and electronic state dependence of proton transfer in the enzymatic cycle of cytochrome P450eryF. J. Inorg. Biochem. 91, 568–585.

    PubMed  CAS  Google Scholar 

  52. Vidakovic, M., S.G. Sligar, H. Li, and T.L. Poulos (1998). Understanding the role of the essential Asp251 in cytochrome P450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. Biochemistry 37, 9211–9219.

    PubMed  CAS  Google Scholar 

  53. Ogliaro, F., S.P. De Visser, S. Cohen, P.K. Sharma, and S. Shaik (2002). Searching for the second oxidant in the catalytic cycle of cytochrome P450: A theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J. Am. Chem. Soc. 124, 2806–2817.

    PubMed  CAS  Google Scholar 

  54. Sono, M., M.P. Roach, E.D. Coulter, and J.H. Dawson (1996). Heme-containing oxygenases. Chem. Rev. 96, 2841–2887.

    PubMed  CAS  Google Scholar 

  55. Yamamoto, S., J. Teraoka, and H. Kashiwagi (1988). Ab initio RHF and CASSCF studies on Fe-O bond in high-valent iron-oxo porphyrins. J. Chem. Phys. 88, 303–312.

    CAS  Google Scholar 

  56. Harris, D.L., G.H. Loew, and L. Waskell (2001). Calculation of the electronic structure and spectra of model cytochrome P450 compound I. J. Inorg. Biochem. 83, 309–318.

    PubMed  CAS  Google Scholar 

  57. Ogliaro, F., S. Cohen, M. Filatov, N. Harris, and S. Shaik (2000). The high-valent compound of cytochrome P450: The nature of the Fe-S bond and the role of the thiolate ligand as an internal electron donor. Angew. Chem. Int. Ed. 39, 3851–3855.

    CAS  Google Scholar 

  58. Ogliaro, F., S.P. De Visser, S. Cohen, J. Kaneti, and S. Shaik (2001). The experimentally elusive oxidant of cytochrome P450: A theoretical “trapping” defining more closely the “real” species. Chembiochem. 2, 848–851.

    PubMed  CAS  Google Scholar 

  59. Antony, J., M. Grodzicki, and A.X. Trautwein (1997). Local density functional study of oxoiron(IV) porphyrin complexes and their one-electron oxidized derivatives. Axial ligand effects. J. Phys. Chem. A 101, 2692–2701.

    CAS  Google Scholar 

  60. Green, M.T. (1999). Evidence for sulfur-based radicals in thiolate compound I intermediates. J. Am. Chem. Soc. 121, 7939–7940.

    CAS  Google Scholar 

  61. Ohta, T., K. Matsuura, K. Yoshizawa, and I. Morishima (2000). The electronic and vibrational structures of iron-oxo porphyrin with a methoxide or cysteinate axial ligand. J. Inorg. Biochem. 82, 141–152.

    PubMed  CAS  Google Scholar 

  62. Ogliaro, F., N. Harris, S. Cohen, M. Filatov, S.P. De Visser, and S. Shaik (2000). A model “rebound” mechanism of hydroxylation by cytochrome P450: Stepwise and effectively concerted pathways, and their reactivity patterns. J. Am. Chem. Soc. 122, 8977–8989.

    CAS  Google Scholar 

  63. Ogliaro, F., S. Cohen, S.P. De Visser, and S. Shaik (2000). Medium polarization and hydrogen bonding effects on compound I of cytochrome P450: What kind of a radical is it really? J. Am. Chem. Soc. 122, 12892–12893.

    CAS  Google Scholar 

  64. Rutter, R., L.P. Hager, H. Dhonau, M. Hendrich, M. Valentine, and P. Debrunner (1984). Chloroperoxidase compound I: Electron paramagnetic resonance and Mösbauer studies. Biochemistry 23, 6809–6816.

    PubMed  CAS  Google Scholar 

  65. De Visser, S.P., F. Ogliaro, Z. Gross, and S. Shaik (2001). What is the difference between the manganese porphyrin and corrole analogues of cytochrome P450’s compound I? Chem. Eur. J. 7, 4954–4960.

    Google Scholar 

  66. Ogliaro, F., S.P. De Visser, J.T. Groves, and S. Shaik (2001). Chameleon states: High-valent metal-oxo species of cytochrome P450 and its ruthenium analogue. Angew. Chem. Int. Ed. 40, 2874–2878.

    CAS  Google Scholar 

  67. Sharma, P.K., S.P. De Visser, F. Ogliaro, and S. Shaik (2003). Is the ruthenium analog of compound I of cytochrome P450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. J. Am. Chem. Soc. 125, 2291–2300.

    PubMed  CAS  Google Scholar 

  68. Green, M.T. (2000). Imidazole-ligated compound I intermediates: The effects of hydrogen bonding. J. Am. Chem. Soc. 122, 9495–9499.

    CAS  Google Scholar 

  69. Green, M.T. (2001). The structure and spin coupling of catalase compound I: A study of noncovalent effects. J. Am. Chem. Soc. 123, 9218–9219.

    PubMed  CAS  Google Scholar 

  70. Deeth, R.J. (1999). Saddle distortions of ferrylporphyrin models for peroxidase compound I: A density functional study. J. Am. Chem. Soc. 121, 6074–6075.

    CAS  Google Scholar 

  71. Ogliaro, F. and S. Shaik (2003). Substituent effects on structure and properties of compound I species. Unpublished results.

    Google Scholar 

  72. Wirstam, M., M.R.A. Blomberg, and P.E.M. Siegbahn (1999). Reaction mechanism of compound I formation in heme peroxidases: A density functional theory study. J. Am. Chem. Soc. 121, 10178–10185.

    CAS  Google Scholar 

  73. Lewis, D.F.V. (2001). Guide to Cytochromes P450. Taylor and Francis, New York.

    Google Scholar 

  74. Poulos, T.L., B.C. Finzel, and A.J. Howard (1986). Crystal structure of substrate-free Pseudomonas putida Cytochrome P450. Biochemistry 25, 5314–5322.

    PubMed  CAS  Google Scholar 

  75. Mueller, E.J., P.J. Loida, and S.G. Sligar (1995). Twenty-five years of P450cam research. In P.R. Ortiz de Montellano (ed.), Cytochrome P-450: Structures, Mechanism and Biochemistry, 2nd edn. pp. 83–124. Plenum Press, New York.

    Google Scholar 

  76. Schöeboom, J.C., S. Cohen, H. Lin, S. Shaik, and W. Thiel (2004). Quantum mechanical/molecular mechanical investigation of the mechanism of C–H hydroxylation of camphor by cytochrome P450cam: Theory supports a two-state rebound mechanism. J. Am. Chem. Soc. 126, 4017–4034.

    Google Scholar 

  77. Keserü G.M., I. Kolossváy, and B. Bertók (1997). Cytochrome P-450 catalyzed insecticide metabolism. Prediction of regio-and stereoselectivity in the primer metabolism of carbofuran: A theoretical study. J. Am. Chem. Soc. 119, 5126–5131.

    Google Scholar 

  78. Keserü G.M., I. Kolossváy, and I. Széely (1999). Inhibitors of cytochrome P450 catalyzed insecticide metabolism: A rational approach. Int. J. Quantum Chem. 73, 123–135.

    Google Scholar 

  79. Cavalli, A. and M. Recanatini (2002). Looking for selectivity among cytochrome P450s inhibitors. J. Med. Chem. 45, 251–254.

    PubMed  CAS  Google Scholar 

  80. Lee, H., P.R. Ortiz de Montellano, and A.E. McDermott (1999). Deuterium magic angle spinning studies of substrates bound to cytochrome P450. Biochemistry 38, 10808–10813.

    PubMed  CAS  Google Scholar 

  81. De Voss, J.J., O. Sibbesen, Z. Zhang, and P.R. Ortiz de Montellano (1997). Substrate docking algorithms and prediction of the substrate specificity of cytochrome P450cam and its L244A mutant. J. Am. Chem. Soc. 119, 5489–5498.

    Google Scholar 

  82. Atkins, W.M. and S.G. Sligar (1987). Metabolic switching in cytochrome P450cam: Deuterium isotope effects on regiospecificity and the monooxygenase/oxidase ratio. J. Am. Chem. Soc. 109, 3754–3760.

    CAS  Google Scholar 

  83. Audergon, C., K.R. Iyer, J.P. Jones, J.F. Darbyshire, and W.F. Trager (1999). Experimental and theoretical study of the effect of active-site constrained substrate motion on the magnitude of the observed intramolecular isotope effect for the P450 101 catalyzed benzylic hydroxylation of isomeric xylenes and 4,4′-dimethylbiphenyl. J. Am. Chem. Soc. 121, 41–47.

    CAS  Google Scholar 

  84. Helms, V. and R.C. Wade (1998). Hydration energy landscape of the active site cavity in cytochrome P450cam. Proteins 32, 381–396.

    PubMed  CAS  Google Scholar 

  85. Winn, P.J., S.K. Ludemann, R. Gauges, V. Lounnas, and R.C. Wade (2002). Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. Proc. Natl. Acad. Sci. USA. 99, 5361–5366.

    PubMed  CAS  Google Scholar 

  86. Das, B., V. Helms, V. Lounnas, and R.C. Wade (2000). Multicopy molecular dynamics simulations suggest how to reconcile crystallographic and product formation data for camphor enantiomers bound to cytochrome P-450cam. J. Inorg. Biochem. 81, 121–131.

    PubMed  CAS  Google Scholar 

  87. Fruetel, J.A., J.R. Collins, D.L. Camper, G.H. Loew, and P.R. Ortiz de Montellano (1992). Calculated and experimental absolute stereochemistry of the styrene and β-methylstyrene epoxides formed by cytochrome P450cam. J. Am. Chem. Soc. 114, 6987–6993.

    CAS  Google Scholar 

  88. Harris, D.L. and G.H. Loew (1995). Prediction of regiospecific hydroxylation of camphor analogs by cytochrome P450cam. J. Am. Chem. Soc. 117, 2738–2746.

    CAS  Google Scholar 

  89. Park, J.-Y. and D.L. Harris (2003). Construction and assessment of models of CYP2E1: Predictions of metabolism from docking, molecular dynamics and density functional theoretical calculations. J. Med. Chem. 46, 1645–1660.

    PubMed  CAS  Google Scholar 

  90. Vaz, A.D.N., D.F. McGinnity, and M.J. Coon (1998). Epoxidation of olefins by cytochrome P450: Evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc. Natl. Acad. Sci. USA. 95, 3555–3560.

    PubMed  CAS  Google Scholar 

  91. Newcomb, M. and P.H. Toy (2000). Hypersensitive radical probes and the mechanisms of cytochrome P450-catalyzed hydroxylation reactions. Acc. Chem. Res. 33, 449–455.

    PubMed  CAS  Google Scholar 

  92. Jin, S., T.M. Markis, T.A. Bryson, S.G. Sligar, and J.H. Dawson (2003). Epoxidation of olefins by hydroperoxo-ferric cytochrome P450. J. Am. Chem. Soc. 125, 3406–3407.

    PubMed  CAS  Google Scholar 

  93. Shaik, S., M. Filatov, D. Schröder, and H. Schwarz (1998). Electronic structure makes a difference: Cytochrome P450 mediated hydroxylations of hydrocarbons as a two-state reactivity paradigm. Chem. Eur. J. 4, 193–199.

    CAS  Google Scholar 

  94. Schröder, D., S. Shaik, and H. Schwarz (2000). Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145.

    PubMed  Google Scholar 

  95. Shaik, S., S.P. De Visser, F. Ogliaro, H. Schwarz, and D. Schröder (2002). Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory. Curr. Opin. Chem. Biol. 6, 556–567.

    PubMed  CAS  Google Scholar 

  96. Sevin, A. and M. Fontecave (1986). Oxygen transfer from iron oxo porphyrins to ethylene. A semiempirical MO/VB approach. J. Am. Chem. Soc. 108, 3266–3272.

    CAS  Google Scholar 

  97. De Visser, S.P., F. Ogliaro, and S. Shaik (2001). Stereospecific oxidation by Compound I of cytochrome P450 does not proceed in a concerted synchronous manner. Chem. Comm. 2322–2323.

    Google Scholar 

  98. Groves, J.T. and G.A. McClusky (1976). Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J. Am. Chem. Soc. 98, 859–861.

    CAS  Google Scholar 

  99. Ortiz de Montellano, P.R. and R.A. Stearns (1987). Timing of the radical recombination step in cytochrome P450 catalysis with ring-strained probes. J. Am. Chem. Soc. 109, 3415–3420.

    CAS  Google Scholar 

  100. Newcomb, M., R. Shen, S.-Y. Choi, P.H. Toy, P.F. Hollenberg, A.D.N. Vaz et al. (2000). Cytochrome P450-catalyzed hydroxylation of mechanistic probes that distinguish between radicals and cations. Evidence for cationic but not for radical intermediates. J. Am. Chem. Soc. 122, 2677–2686.

    CAS  Google Scholar 

  101. Filatov, M., N. Harris, and S. Shaik (1999). On the “rebound” mechanism of alkane hydroxylation by cytochrome P450: Electronic structure of the intermediate and the electron transfer character in the rebound step. Angew. Chem. Int. Ed. 38, 3510–3512.

    CAS  Google Scholar 

  102. Harris, N., S. Cohen, M. Filatov, F. Ogliaro, and S. Shaik (2000). Two-state reactivity in the rebound step of alkane hydroxylation by cytochrome P-450: Origins of free radicals with finite lifetimes. Angew. Chem. Int. Ed. 39, 2003–2007.

    CAS  Google Scholar 

  103. Ogliaro, F., M. Filatov, and S. Shaik (2000). Alkane hydroxylation by cytochrome P450: Is kinetic isotope effect a reliable probe of transition state structure? Eur. J. Inorg. Chem. 2455–2458.

    Google Scholar 

  104. De Visser, S.P., F. Ogliaro, P.K. Sharma, and S. Shaik (2002). Hydrogen bonding modulates the selectivity of enzymatic oxidation by P450: Chameleon oxidant behavior by Compound I. Angew. Chem. Int. Ed. 41, 1947–1951.

    Google Scholar 

  105. De Visser, S.P., F. Ogliaro, P.K. Sharma, and S. Shaik (2002). What factors affect the regioselectivity of oxidation by cytochrome P450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction. J. Am. Chem. Soc. 124, 11809–11826.

    PubMed  Google Scholar 

  106. Cohen, S. and S. Shaik (2004). Quntum mechanical/molecular mechanical study of the regioselectivity of camphor and cyclohexene oxidations by cytochrome P450cam. In preparation; part of the Ph. D. thesis of Mrs. S. Cohen.

    Google Scholar 

  107. Yoshizawa, K. (2002). Theoretical study on kinetic isotope effects in the C–H bond activation of alkanes by iron-oxo complexes. Coord. Chem. Rev. 226, 251–259.

    CAS  Google Scholar 

  108. Yoshizawa, K., T. Ohta, M. Eda, and T. Yamabe (2000). Two-step concerted mechanism for the hydrocarbon hydroxylation by cytochrome P450. Bull. Chem. Soc. Jpn. 73, 401–407.

    CAS  Google Scholar 

  109. Yoshizawa, K., Y. Shiota, and Y. Kagawa (2000). Energetics for the oxygen rebound mechanism of alkane hydroxylation by the iron-oxo species of cytochrome P450. Bull. Chem. Soc. Jpn. 73, 2669–2673.

    CAS  Google Scholar 

  110. Yoshizawa, K., Y. Kagawa, and Y. Shiota (2000). Kinetic isotope effects in a C–H bond dissociation by the iron-oxo species of cytochrome P450. J. Phys. Chem. B 104, 12365–12370.

    CAS  Google Scholar 

  111. Yoshizawa, K., T. Kamachi, and Y. Shiota (2001). A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450. J. Am. Chem. Soc. 123, 9806–9816.

    PubMed  CAS  Google Scholar 

  112. Hata, M., Y. Hirano, T. Hoshino, and M. Tsuda (2001). Monooxygenation mechanism by cytochrome P-450. J. Am. Chem. Soc. 123, 6410–6416.

    PubMed  CAS  Google Scholar 

  113. Shaik, S., S. Cohen, S.P. de Visser, P.K. Sharma, D. Kumar, S. Kozuchs et al. (2004). The “rebound controversy”: An overview and theoretical modeling of the rebound step in C–H hydroxylaion by cytochrome P450. Eur. J. Inorg. Chem. 207–226.

    Google Scholar 

  114. Guallar, V., B.F. Gherman, W.H. Miller, S.J. Lippard, and R.A. Friesner (2002). Dynamics of alkane hydroxylation at the non-heme diiron center in methane monooxygenase. J. Am. Chem. Soc. 124, 3377–3384.

    PubMed  CAS  Google Scholar 

  115. De Visser, S.P., F. Ogliaro, N. Harris, and S. Shaik (2001). Multi-state epoxidation of ethene by cytochrome P450: A quantum chemical study. J. Am. Chem. Soc. 123, 3037–3047.

    PubMed  Google Scholar 

  116. De Visser, S.P., F. Ogliaro, and S. Shaik (2001). How does ethene inactivate cytochrome P450 en route to its epoxidation? A density functional study. Angew. Chem. Int. Ed. 40, 2871–2874.

    Google Scholar 

  117. Groves, J.T., K.-H. Ahn, and R. Quinn (1988). Cis-trans isomerization of epoxides catalyzed by ruthenium(II) porphyrins. J. Am. Chem. Soc. 110, 4217–4220.

    CAS  Google Scholar 

  118. De Visser, S.P., D. Kumar, and S. Shaik (2004). How do aldehyde side products occur during alkene epoxidation by cytochrome P450? Theory reveals a state-specific multi-state scenario where the high-spin component leads to all side products. J. Inorg. Biochem. in press.

    Google Scholar 

  119. De Visser, S.P. and S. Shaik (2003). A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome P450 enzymes. J. Am. Chem. Soc. 125, 7413–7424.

    PubMed  Google Scholar 

  120. Korzekwa, K.R., D.C. Swinney, and W.F. Trager (1989). Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P450 catalyzed aromatic hydroxylation. Biochemistry 28, 9019–9027.

    PubMed  CAS  Google Scholar 

  121. Rietjens, I.M.C.M., A.E.M.F. Soffers, C. Veeger, and J. Vervoort (1993). Regioselectivity of cytochrome P-450 catalyzed hydroxylation of fluorobenzenes predicted by calculated frontier orbital substrate characteristics. Biochemistry 32, 4801–4812.

    PubMed  CAS  Google Scholar 

  122. Sharma, P.K., S.P. de Visser, and S. Shaik (2003). Can a single oxidant with two-spin states masquerade as two different oxidants? A study of the sulfoxidation mechanism by cytochrome P450. J. Am. Chem. Soc. 125, 8698–8699.

    PubMed  CAS  Google Scholar 

  123. Groves, J.T., G.E. Avaria-Neisser, K.M. Fish, M. Imachi, and R.L. Kuczkowski (1986). Hydrogendeuterium exchange during propylene epoxidation by cytochrome P450. J. Am. Chem. Soc. 108, 3837–3838.

    CAS  Google Scholar 

  124. Groves, J.T. and D.V. Subramanian (1984). Hydroxylation by cytochrome P450 and metalloporphyrin models. Evidence for allylic rearrangement. J. Am. Chem. Soc. 106, 2177–2181.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Shaik, S., De Visser, S.P. (2005). Computational Approaches to Cytochrome P450 Function. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics