Skip to main content

Self-Driven continuous Dislocations and Growth

  • Conference paper
Mechanics of Material Forces

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 11))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V., Mathematical methods of Classical Mechanics, Springer, 1978

    Google Scholar 

  2. Elzanowski, M., Epstein, M. and Sniatycki, J., (1990), G-structures and material homogeneity, J. Elasticity, 23, 167–180.

    Article  MathSciNet  Google Scholar 

  3. Epstein, M., (1992), Eshelby-like tensors in thermoelasticity, Nonlinear thermomechanical processes in continua, (W. Muschik and G.A. Maugin, eds.), TUB-Dokumentation, Berlin, 61, 147–159.

    Google Scholar 

  4. Epstein, M., (1999), On the anelastic evolution of second-grade materials, Extracta Mathematicae, 14, 157–161.

    MATH  MathSciNet  Google Scholar 

  5. Epstein, M., (1999), Towards a complete second-order evolution law, Math. Mech. Solids, 4, 251–266.

    MATH  MathSciNet  Google Scholar 

  6. Epstein, M. and Bucataru, I., (in press), Continuous distributions of dislocations in bodies with microstructure, J. Elasticity.

    Google Scholar 

  7. Epstein, M. and de León, M., (1996), Homogeneity conditions for generalized Cosserat media, J. Elasticity, 43, 189–201.

    Article  MathSciNet  Google Scholar 

  8. Epstein, M. and de León, M., (1998), Geometrical theory of uniform Cosserat media, J. Geom. Physics, 26, 127–170.

    Article  Google Scholar 

  9. Epstein, M. and Elzanowski, M., (in press), A model of the evolution of a two-dimensional defective structure, J. Elasticity.

    Google Scholar 

  10. Epstein, M., Elzanowski, M. and Sniatycki, J., (1987), Locality and uniformity in global elasticity,”, in Lecture Notes in Mathematical Physics, 1139, Springer Verlag, 300–310.

    MathSciNet  Google Scholar 

  11. Epstein, M. and Maugin, G.A., (1990), Sur le tenseur de moment matériel d’Eshelby en élasticité non linéaire, C. R. Acad. Sci. Paris, 310/II, 675–768.

    MathSciNet  Google Scholar 

  12. Epstein, M. and Maugin, G.A., (1990), The energy-momentum tensor and material uniformity in finite elasticity, Acta Mechanica, 83, 127–133.

    Article  MathSciNet  Google Scholar 

  13. Epstein, M. and Maugin, G.A., (1996), On the geometrical material structure of anelasticity, Acta Mechanica, 115, 119–134.

    Article  MathSciNet  Google Scholar 

  14. Eshelby, J.D., (1951), The force on an elastic singularity, Phil. Trans. Roy. Soc. London, A244, 87–112.

    MathSciNet  Google Scholar 

  15. Gurtin, M.E., (2000), Configurational forces as basic concepts of continuum physics, Springer-Verlag.

    Google Scholar 

  16. Kondo, K., (1955), Geometry of elastic deformation and incompatibility, Memoirs of the unifying study of the basic problems in engineering science by means of geometry, Tokyo Gakujutsu Benken Fukyu-Kai.

    Google Scholar 

  17. Maugin, G.A., (1993), Material inhomogeneities in elasticity, Chapman and Hall.

    Google Scholar 

  18. Noll, W., (1967), Materially uniform simple bodies with inhomogeneities, Arch. Rational Mech. Anal., 27, 1–32.

    Article  MathSciNet  Google Scholar 

  19. Wang, C.C., (1967), On the geometric structure of simple bodies: a mathematical foundation for the theory of continuous distributions of dislocations, Arch. Rational Mech. Anal., 27, 33–94.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Epstein, M. (2005). Self-Driven continuous Dislocations and Growth. In: Steinmann, P., Maugin, G.A. (eds) Mechanics of Material Forces. Advances in Mechanics and Mathematics, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-26261-X_13

Download citation

Publish with us

Policies and ethics