Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brill, A. S. 1966. Peroxidases and catalase. In Comprehensive Biochemistry (Florkin, M., and E. H. Stotz, eds.), pp 447–479, Elsevier, New York.

    Google Scholar 

  2. Chance, B., H. Sies and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527–605.

    CAS  PubMed  Google Scholar 

  3. Forstrom, J. W., J. J. Zakowski and A. L. Tappel. 1978. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17:2639–2644.

    Article  CAS  PubMed  Google Scholar 

  4. Epp, O., R. Ladenstein and A. Wendel. 1983. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem. 133:51–69.

    Article  CAS  PubMed  Google Scholar 

  5. Dolin, M. I. 1957. The Streptococcus faecalis oxidases for reduced diphosphopyridine nucleotide. III. Isolation and properties of a flavin peroxidase for reduced diphosphopyridine nucleotide. J. Biol. Chem. 225:557–573.

    CAS  PubMed  Google Scholar 

  6. Poole, L. B. and A. Claiborne. 1989. The non-flavin redoxcenter of the streptococcal NADH peroxidase. II. Evidence for a stabilized cysteine-sulfenic acid. J. Biol. Chem. 264:12330–12338.

    CAS  PubMed  Google Scholar 

  7. Christman, M. F., R. W. Morgan, F. S. Jacobson and B. N. Ames. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762.

    Article  CAS  PubMed  Google Scholar 

  8. Jacobson, F. S., R. W. Morgan, M. F. Christman and B. N. Ames. 1989. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J. Biol. Chem. 264:1488–1496.

    CAS  PubMed  Google Scholar 

  9. Storz, G., F. S. Jacobson, L. A. Tartaglia, R. W. Morgan, L. A. Silveira and B. N. Ames. 1989. An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: Genetic characterization and cloning of ahp. J. Bacterial. 171:2049–2055.

    CAS  Google Scholar 

  10. Tartaglia, L. A., G. Storz, M. H. Brodsky, A. Lai and B. N. Ames. 1990. Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J. Biol, Chem. 265:10535–10540.

    CAS  Google Scholar 

  11. Kim, K., I. H. Kim, K. Y. Lee, S. G. Rhee and E. R. Stadtman. 1988. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J. Biol. Chem. 263:4704–4711.

    CAS  PubMed  Google Scholar 

  12. Chae, H. Z., K. Robison, L. B. Poole, G. Church, G. Storz and S. G. Rhee. 1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase andthiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. U.S.A. 91:7017–7021.

    CAS  PubMed  Google Scholar 

  13. Chae, H. Z., S. J. Chung and S. G. Rhee. 1994. Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem. 269:27670–27678.

    CAS  PubMed  Google Scholar 

  14. Hofmann, B., H.-J. Hecht and L. Flohé. 2002. Peroxiredoxins. Biol. Chem. 383:347–364.

    CAS  PubMed  Google Scholar 

  15. Rhee, S. G. 2002. Protein tyrosine phosphatases and peroxiredoxins. In Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles (Torres, M., J. M. Fukuto, and H. J. Forman, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  16. Forman, H. J. and E. Cadenas. 1997. Oxidative Stress and Signal Transduction, Chapman and Hall, New York.

    Google Scholar 

  17. Wood, Z. A., E. Schroder, J. R. Harris and L. B. Poole. 2003. Structure, Mechanism and Regulation of Peroxiredoxins. Trends Biochem. Sci.: in press.

    Google Scholar 

  18. Jeong, W., M. K. Cha and I. H. Kim. 2000. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275:2924–2930.

    Article  CAS  PubMed  Google Scholar 

  19. Cha, M. K., H. K. Kim and I. H. Kim. 1995. Thioredoxin-linked ‘thiol peroxidase’ from periplasmic space of Escherichia coli. J. Biol. Chem. 270:28635–28641.

    CAS  PubMed  Google Scholar 

  20. Cha, M. K., H. K. Kim and I. H. Kim. 1996. Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family. J. Bacterial. 178:5610–5614.

    CAS  Google Scholar 

  21. Zhou, Y., X. Y. Wan, H. L. Wang, Z. Y. Yan, Y. D. Hou and D. Y. Jin. 1997. Bacterial scavengase p20 is structurally and functionally related to peroxiredoxins. Biochem. Biophys. Res. Commun. 233:848–852.

    Article  CAS  PubMed  Google Scholar 

  22. Poole, L. B. and H. R. Ellis. 1996. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35:56–64.

    CAS  PubMed  Google Scholar 

  23. Higuchi, M., Y. Yamamoto, L. B. Poole, M. Shimada, Y. Sato, N. Takahashi and Y. Kamio. 1999. Functions for two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 181:5940–5947.

    CAS  PubMed  Google Scholar 

  24. Poole, L. B., M. Higuchi, M. Shimada, M. Li Calzi and Y. Kamio. 2000. Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Free Radic. Biol. Med. 28:108–120.

    Article  CAS  PubMed  Google Scholar 

  25. Niimura, Y., L. B. Poole and V. Massey. 1995. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl hydroperoxide reductase flavoprotein component show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl hydroperoxide reductase 22-kDa protein component. J. Biol. Chem. 269:25645–25650.

    Google Scholar 

  26. Kitano, K., Y. Niimura, Y. Nishiyama and K. Miki. 1999. Stimulation of peroxidase activity by decamerization related to ionic strength: AhpC protein from Amphibacillus xylanus. J. Biochem. (Tokyo) 126:313–319.

    CAS  Google Scholar 

  27. Niimura, Y., Y. Nishiyama, D. Saito, H. Tsuji, M. Hidaka, T. Miyaji, T. Watanabe and V. Massey. 2000. A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. J. Bacteriol. 182:5046–5051.

    Article  CAS  PubMed  Google Scholar 

  28. Toomey, D. and S. G. Mayhew. 1998. Purification and characterisation of NADH oxidase from Thermus aquaticus YT-1 and evidence that it functions in a peroxide-reduction system. Eur. J. Biochem. 251:935–945.

    Article  CAS  PubMed  Google Scholar 

  29. Logan, C. and S. G. Mayhew. 2000. Cloning, over-expression and characterization of peroxiredoxin and NADH-peroxiredoxin reductase from Thermus aquaticus YT-1. J. Biol. Chem. 275:30019–30028.

    Article  CAS  PubMed  Google Scholar 

  30. Baker, L. M. S., A. Raudonikiene, P. H. Hoffman and L. B. Poole. 2001. Essential thioredoxin-dependent peroxiredoxin from Helicobacter pylori: genetic and kinetic characterization. J. Bacteriol. 183:1961–1973.

    Article  CAS  PubMed  Google Scholar 

  31. Reynolds, C. M., J. Meyer and L. B. Poole. 2002. An NADH-dcpendent bacterial thioredoxin reductase-like protein, in conjunction with a glutaredoxin homologue, form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum. Biochemistry 41:1990–2001.

    Article  CAS  PubMed  Google Scholar 

  32. Vergauwen, B., F. Pauwels, F. Jacquemotte, T. E. Meyer, M. A. Cusanovich, R. G. Bartsch and J. J. Van Beeumen. 2001. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J. Biol. Chem. 276:20890–20897.

    Article  CAS  PubMed  Google Scholar 

  33. Hillas, P. J., F. S. del Alba, J. Oyarzabal, A. Wilks and P. R. Ortiz de Montellano. 2000. The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J. Biol. Chem. 275:18801–18809.

    Article  CAS  PubMed  Google Scholar 

  34. Bryk, R., P. Griffin and C. Nathan. 2000. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215.

    CAS  PubMed  Google Scholar 

  35. Chauhan, R. and S. C. Mande. 2001. Characterization of the Mycobacterium tuberculosis H37Rv alkyl hydroperoxidase AhpC points to the importance of ionic interactions in oligomerization and activity. Biochem. J. 354:209–215.

    Article  CAS  PubMed  Google Scholar 

  36. Bryk, R., C. D. Lima, H. Erdjument-Bromage, P. Tempst and C. Nathan. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295:1073–1077.

    Article  CAS  PubMed  Google Scholar 

  37. Chauhan, R. and S. C. Mande. 2002. Site directed mutagenesis reveals a novel catalytic mechanism of Mycobacterium tuberculosis alkylhydroperoxidase C. Biochem. J. in press.

    Google Scholar 

  38. Storz, G., M. F. Christman, H. Sies and B. N. Ames. 1987. Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurhun. Proc Natl Acad Sci USA 84:8917–8921.

    CAS  PubMed  Google Scholar 

  39. Greenberg, J. T. and B. Demple. 1988. Overproduction of peroxide-scavenging enzymes in Escherichia coli suppresses spontaneous mutagenesis and sensitivity to redox-cycling agents in oxyR-mutants. EMBO J. 7:2611–2617.

    CAS  PubMed  Google Scholar 

  40. Ferrante, A. A., J. Augliera, K. Lewis and A. M. Klibanov. 1995. Cloning of an organic solvent-resistancegene in Escherichia coli: the unexpected role of alkylhydroperoxide reductase. Proc. Natl. Acad. Sci. USA 92:7617–7621.

    CAS  PubMed  Google Scholar 

  41. Costa Seaver, L. and J. A. Imlay. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacterial. 183:7173–7181.

    Google Scholar 

  42. Hartford, O. M. and B. C. Dowds. 1994. Isolation and characterization of a hydrogen peroxide resistant mutant of Bacillus subtilis. Microbiology 140:297–304.

    CAS  PubMed  Google Scholar 

  43. Antelmann, H., S. Engelmann, R. Schmid and M. Hecker. 1996. General and oxidative stress responses in Bacillus subtilis: cloning, expression and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178:6571–6578.

    CAS  PubMed  Google Scholar 

  44. Bsat, N., L. Chen and J. D. Helmann. 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178:6579–6586.

    CAS  PubMed  Google Scholar 

  45. Lundstrom, A. M. and L. Bolin. 2000. A 26 kDa protein of Helicabacter pylori shows alkyl hydroperoxide reductase (AhpC) activity and the mono-cistronic transcription of the gene is affected by pH. Microb. Pathog. 29:257–266.

    CAS  PubMed  Google Scholar 

  46. Olczak, A. A., J. W. Olson and R. J. Maier. 2002. Oxidative-stress resistance mutants of Helicobacter pylori. J. Bacteriol. 184:3186–3193.

    Article  CAS  PubMed  Google Scholar 

  47. Armstrong-Buisseret, L., M. B. Cole and G. S. A. B. Stewart. 1995. A homologue to the Escherichia coli alkyl hydroperoxide reductase AhpC is induced by osmotic upshock in Staphylococcus aureus. Microbiology 141:1655–1661.

    CAS  PubMed  Google Scholar 

  48. Loprasert, S., S. Atichartpongkun, W. Whangsuk and S. Mongkolsuk. 1997. Isolation and analysis of the Xanthomonas alkyl hydroperoxide reductase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX. J. Bacteriol. 179:3944–3949.

    CAS  PubMed  Google Scholar 

  49. Mongkolsuk, S., S. Loprasert, W. Whangsuk, M. Fuangthong and S. Atichartpongkun. 1997. Characterization of transcription organization and analysis of unique expression patterns of an alkyl hydroperoxide reductase C gene (ahpC) and the peroxide regulator operon ahpF-oxyR-orfX from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 179:3950–3955.

    CAS  PubMed  Google Scholar 

  50. Mongkolsuk, S., W. Whangsuk, P. Vattanaviboon, S. Loprasert and M. Fuangthong. 2000. A Xanthomonas alkyl hydroperoxide reductase subunit C (ahpC) mutant showed an altered peroxide stress response and complex regulation of the compensatory response of peroxide detoxification enzymes. J. Bacteriol. 182:6845–6849.

    CAS  PubMed  Google Scholar 

  51. King, K. Y., J. A. Horenstein and M. G. Caparon. 2000. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182:5290–5299.

    CAS  PubMed  Google Scholar 

  52. Rocha, E. R. and C. J. Smith. 1999. Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteriodes fragilis. J. Bacteriol. 181:5701–5710.

    CAS  PubMed  Google Scholar 

  53. Rocha, E. R., G. Owens and C. J. Smith. 2000. The redox-sensitive transcriptional activator OxyR regulates the peroxide response regulon in the obligate anaerobe Bacteroides fragilis. J. Bacteriol. 182:5059–5069.

    Article  CAS  PubMed  Google Scholar 

  54. Deretic, V., W. Philipp, S. Dhandayuthapani, M. H. Mudd, R. Curcic, T. Garbe, B. Heym, L. E. Via and S. T. Cole. 1995. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene:implications for sensitivity to isoniazid. Mol. Microbiol. 17:889–900.

    Article  CAS  PubMed  Google Scholar 

  55. Wilson, T. M. and D. M. Collins. 1996. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol. Microbiol. 19:1025–1034.

    Article  CAS  PubMed  Google Scholar 

  56. Dhandayuthapani, S., Y. Zhang, M. H. Mudd and V. Deretic. 1996. Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J. Bacteriol. 178:3641–3649.

    CAS  PubMed  Google Scholar 

  57. Sherman, D. R., K. Mdluli, M. J. Hickey, T. M. Arain, S. L. Morris, C. E. Barry and C. K. Stover. 1996. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272:1641–1643.

    CAS  PubMed  Google Scholar 

  58. Heym, B., E. Stavropoulous, N. Honore, P. Domenech, B. Saint-Joanis, T. M. Wilson, D. M. Collins, M. J. Colston and S. T. Cole. 1997. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect. Immun. 65:1395–1401.

    CAS  PubMed  Google Scholar 

  59. Wilson, T., G. W. de Lisle, J. A. Marcinkeviciene, J. S. Blanchard and D. M. Collins. 1998. Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144:2687–2695.

    CAS  PubMed  Google Scholar 

  60. Springer, B., S. Master, P. Sander, T. Zahrt, M. McFalone, J. Song, K. G. Papavinasasundaram, M. J. Colston, E. Boettger and V. Deretic. 2001. Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation. Infect. Immun. 69:5967–5973.

    Article  CAS  PubMed  Google Scholar 

  61. Nishiyama, Y., V. Massey, K. Takeda, S. Kawasaki, J. Sato, T. Watanabe and Y. Niimura. 2001. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria. J. Bacteriol. 183:2431–2438.

    Article  CAS  PubMed  Google Scholar 

  62. Sohling, B., T. Parther, K. P. Rucknagel, M. A. Wagner and J. R. Andreesen. 2001. A selenocysteine-containing peroxiredoxin from the strictly anaerobic organism Eubacterium acidaminophilum. Biol. Chem. 382:979–986.

    Article  CAS  PubMed  Google Scholar 

  63. Wood, Z. A., L. B. Poole, R. R. Hantgan and P. A. Karplus. 2002. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry. 41:5493–4403.

    Article  CAS  PubMed  Google Scholar 

  64. Poole, L. B. and H. R. Ellis. 2002. Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Methods Enzymol. 348:122–136.

    CAS  PubMed  Google Scholar 

  65. Ellis, H. R. and L. B. Poole. 1997. Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36:15013–15018.

    CAS  PubMed  Google Scholar 

  66. Ellis, H. R. and L. B. Poole. 1997. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36:13349–13356.

    CAS  PubMed  Google Scholar 

  67. Yeh, J. I., A. Claiborne and W. G. J. Hol. 1996. Structure of the native cysteine-sulfenic acid redox center of enterococcal NADH peroxidase refined at 2.8 angstroms resolution. Biochemistry 35:9951–9957.

    Article  CAS  PubMed  Google Scholar 

  68. Kice, J. L. 1980. Mechanisms and reactivity in reactions of organic oxyacids of sulfur and their anhydrides. Adv. Phys. Org. Chem. 17:65–181.

    CAS  Google Scholar 

  69. Claiborne, A., J. I. Yeh, T. C. Mallett, J. Luba, E. J. Crane, 3rd, V. Charrier and D. Parsonage. 1999. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38:15407–15416.

    Article  CAS  PubMed  Google Scholar 

  70. Allison, W. S. 1976. Formation and reactions of sulfenic acids in proteins. Acc. Chem. Res. 9:293–299.

    Article  CAS  Google Scholar 

  71. Fuangthong, M. and J. D. Helmann. 2002. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc. Natl. Acad. Sci. USA 99:6690–6695.

    Article  CAS  PubMed  Google Scholar 

  72. Schröder, E., J. A. Littlechild, A. A. Lebedev, N. Errington, A. A. Vagin and M. N. Isupov. 2000. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Structure 8:605–615.

    PubMed  Google Scholar 

  73. Wagner, E., S. Luche, L. Penna, M. Chevallet, A. V. Dorsselaer, E. Leize-Wagner and T. Rabilloud. 2002. A method for detection of overoxidation of cysteine: Peroxiredoxins are oxidised in vivo at the active site cysteine during oxidative stress. Biochem. J. 365: in press.

    Google Scholar 

  74. Poole, L. B., C. M. Reynolds, Z. Wood, P. A. Karplus, H. R. Ellis and M. Li Calzi. 2000. AhpF and other NADH: peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. Eur. J. Biochem. 267:6126–6133.

    Article  CAS  PubMed  Google Scholar 

  75. Poole, L. B., A. Godzik, A. Nayeem and J. D. Schmitt. 2000. AhpF can be dissected into two functional units; tandem repeats of two thioredoxin-like folds in the N-terminus mediate electron transfer from the thioredoxin reductase-like C-terminus to AhpC. Biochemistiy 39:6602–6615.

    CAS  Google Scholar 

  76. Wood, Z. A., L. B. Poole and P. A. Karplus. 2001. Structure of intact AhpF reveals a mirrored thioredoxin-like active site and implies large domain rotations during catalysis. Biochemistry 40:3900–3911.

    Article  CAS  PubMed  Google Scholar 

  77. Reynolds, C. M. and L. B. Poole. 2000. Attachment of the N-terminal domain of Salmonella typhimurium AhpF to Escherichia coli thioredoxin reductase confers AhpC reductase activity but does not affect thioredoxin reductase activity. Biochemistry 39:8859–8869.

    CAS  PubMed  Google Scholar 

  78. Nunn, C. M., S. Djordjevic, P. J. Hillas, C. R. Nishida and P. R. Ortiz de Montellano. 2002. The crystal structure of Mycobacterium tuberculosis alkylhydroperoxidase AhpD, a potential target for antitubercular drug design. J. Biol. Chem. 277:20033–20040.

    Article  CAS  PubMed  Google Scholar 

  79. Hirotsu, S., Y. Abe, K. Okada, N. Nagahava, H. Hori, T. Nishino and T. Hakoshima. 1999. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl. Acad. Sci. USA 96:12333–12338.

    Article  CAS  PubMed  Google Scholar 

  80. Alphey, M. S., C. S. Bond, E. Tetaud, A. H. Fairlamb and W. N. Hunter. 2000. The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. J. Mol. Biol. 300:903–916.

    Article  CAS  PubMed  Google Scholar 

  81. Declercq, J. P., C. Evrard, A. Clippe, D. Vander Stricht, A. Bernard and B. Knoops. 2001. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 angstrom resolution. J. Mol. Biol. 311:751–759.

    Article  CAS  PubMed  Google Scholar 

  82. Choi, H.-J., S. W. Kang, C.-H. Yang, S. G. Rhee and S.-E. Ryu. 1998. Crystal structure of a novel human peroxidase enzyme at 2.0 Å resolution. Nature Struct. Biol. 5:400–406.

    Article  CAS  PubMed  Google Scholar 

  83. Hale, S. P., L. B. Poole and J. A. Gerlt. 1993. Mechanism of the reaction catalyzed by staphylococcal nuclease: identification of the rate-determining step. Biochemistiy 32:7479–7487.

    CAS  Google Scholar 

  84. Poole, L. B. 1999. Flavin-linked redox components required for AhpC reduction in alkyl hydroperoxide reductase systems. In Flavins and Flavoproteins 1999. (Ghisla, S., P. Kroneck, P. Macheroux, and H. Sund, eds.), pp 691–694, Agency for Scientific Publications, Berlin.

    Google Scholar 

  85. Ritz, D., J. Lim, C. M. Reynolds, L. B. Poole and J. Beckwith. 2001. Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Science 294:158–160.

    Article  CAS  PubMed  Google Scholar 

  86. Costa Seaver, L. and J. A. Imlay. 2001. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 183:7182–7189.

    Google Scholar 

  87. Storz, G. and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2:188–194.

    Article  CAS  PubMed  Google Scholar 

  88. Graumann, J., H. Lilie, X. Tang, K. A. Tucker, J. H. Hoffmann, J. Vijayalakshmi, M. Saper, J. C. A. Bardwell and U. Jakob. 2001. Activation of the redox-regulated molecular chaperone Hsp33 — A two-step mechanism. Structure 9:377–387.

    Article  CAS  PubMed  Google Scholar 

  89. Mongkolsuk, S. and J. D. Helmann. 2002. Regulation of inducible peroxide stress responses. Mol. Microbiol. 45:9–15.

    Article  CAS  PubMed  Google Scholar 

  90. Mongkolsuk, S., S. Loprasert, W. Whangsuk, M. Fuangthong and S. Atichartpongkun. 1997. Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 180:2636–2643.

    Google Scholar 

  91. Sukchawalit, R., S. Loprasert, S. Atichartpongkul and S. Mongkolsuk. 2001. Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications. J. Bacteriol. 183:4405–4412.

    Article  CAS  PubMed  Google Scholar 

  92. Atichartpongkul, S., S. Loprasert, P. Vattanaviboon, W. Whangsuk, J. D. Helmann and S. Mongkolsuk. 2001. Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology 147:1775–1782.

    CAS  PubMed  Google Scholar 

  93. Johnston, N. C. and H. Goldfine. 1983. Lipid composition in the classification of the butyric acid-producing clostridia. J. Gen. Microbiol. 129:1075–1081.

    CAS  PubMed  Google Scholar 

  94. Morand, O. H., R. A. Zoeller and C. R. Raetz. 1988. Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J. Biol. Chem. 263:11597–11606.

    CAS  PubMed  Google Scholar 

  95. Fukumori, F., H. Hirayama, H. Takami, A. Inoue and K. Horikoshi. 1998. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance. Extremophiles 2:395–400.

    Article  CAS  PubMed  Google Scholar 

  96. Obinger, C., M. Maj, P. Nicholls and P. Loewen. 1997. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Arch. Biochem. Biophys. 342:58–67.

    Article  CAS  PubMed  Google Scholar 

  97. Hillar, A., B. Peters, R. Pauls, A. Loboda, H. Zhang, A. G. Mauk and P. C. Loewen. 2000. Modulation of the activities of catalase-peroxidase HPI of Escherichia coli by site-directed mutagenesis. Biochemistry 59:5868–5875.

    Google Scholar 

  98. Link, A. J., K. Robison and G. M. Church. 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18:1259–1313.

    CAS  PubMed  Google Scholar 

  99. Moore, T. D. E. and P. F. Sparling. 1996. Interruption of the gpxA gene increases the sensitivity of Neisseria meningitidis to paraquat. J. Bacteriol. 178:4301–4305.

    CAS  PubMed  Google Scholar 

  100. Tonello, F., W. G. Dundon, B. Satin, M. Molinari, G. Tognon, G. Grandi, G. Del Giudice, R. Rappuoli and C. Montecucco. 1999. The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol. Microbiol. 34:238–246.

    Article  CAS  PubMed  Google Scholar 

  101. Yamamoto, Y., M. Higuchi, L. B. Poole and Y. Kamio. 2000. Role of the dpr product in oxygen tolerance in Streptococcus mutans. J. Bacteriol. 82:3740–3747.

    Google Scholar 

  102. Yamamoto, Y., L. B. Poole, R. R. Hantgan and Y. Kamio. 2002. An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vivo. J. Bacteriol. 184:2932–2939.

    Article  Google Scholar 

  103. Zhao, G., P. Ceci, A. Hari, L. Giangiacomo, T. M. Laue, E. Chiancone and N. D. Chasteen. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starvedcells. Aferritin-like DNA-binding protein of Escherichia coli. J. Biol. Chem. 277:27689–27696.

    CAS  PubMed  Google Scholar 

  104. Zheng, M., F. Åslund and G. Storz. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721.

    Article  CAS  PubMed  Google Scholar 

  105. Kim, S. O., K. Merchant, R. Nudelman, W. F. Beyer, T. Keng, J. DeAngelo, A. Hausladen and J. S. Stamler. 2002. OxyR: a molecular code for redox-related signaling. Cell 109:383–396.

    CAS  PubMed  Google Scholar 

  106. Åslund, F., M. Zheng, J. Beckwith and G. Storz. 1999. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. U.S.A. 96:6161–6165.

    PubMed  Google Scholar 

  107. Horsburgh, M. J., M. O. Clements, H. Crossley, E. Ingham and S. J, Foster. 2001. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect. Immun. 69:3744–3754.

    Article  CAS  PubMed  Google Scholar 

  108. van Vliet, A. H., M. L. Baillon, C. W. Penn and J. M. Ketley. 1999. Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J. Bacteriol. 181:6371–6376.

    PubMed  Google Scholar 

  109. Dhandayuthapani, S., L. E. Via, C. A. Thomas, P. M. Horowitz, D. Deretic and V. Deretic. 1995. Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol. Microbiol. 17:889–900.

    Article  PubMed  Google Scholar 

  110. Francis, K. P., P. D. Taylor, C. J. Inchley and M. P. Gallagher. 1997. Identification of the ahp operon of Salmonella typhimurium as a macrophage-induced locus. J. Bacteriol. 179:4046–4048.

    CAS  PubMed  Google Scholar 

  111. Rankin, S., Z. Li and R. R. Isberg. 2002. Macrophage-induced genes of Legionella pneumophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect. Immun. 70:3637–3648.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Poole, L.B. (2003). Bacterial Peroxiredoxins. In: Forman, H.J., Fukuto, J., Torres, M. (eds) Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles. Springer, Dordrecht. https://doi.org/10.1007/0-306-48412-9_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48412-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1117-7

  • Online ISBN: 978-0-306-48412-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics