Skip to main content

Enzymes and Mechanisms for Violaxanthin-zeaxanthin Conversion

  • Chapter
Regulation of Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 11))

Summary

The xanthophyll cycle is of great importance in relation to light stress. Particularly, interest has been focused on the possible photoprotective role of zeaxanthin. In higher plants under light stress, zeaxanthin is formed from violaxanthin in a reaction catalyzed by violaxanthin de-epoxidase (VDE). The reverse reaction is catalyzed by zeaxanthin epoxidase (ZE) under low light or in darkness. VDE has been purified from spinach and lettuce as a 43-kDa protein. The gene has been cloned and sequenced from several species, and a few mutants have been isolated. The gene is nuclear encoded and the transit peptide is characteristic for targeting to the thylakoid lumen. The activity of VDE is affected by factors such as a pH-dependent binding to the thylakoid membrane, concentration of ascorbic acid, temperature and availability of violaxanthin in relation to amount, type and distribution of pigment-protein complexes in the membrane. The information about ZE is more limited. The enzyme has not yet been isolated but its gene has been cloned and sequenced and a number of mutants have been isolated. The role of the xanthophyll cycle in the dissipation of excess light energy will be discussed particularly in relation to the recent progress in studies on various mutants. The possible role of the xanthophyll cycle in other processes, such as protection against oxidative stress of lipids, regulation of membrane fluidity, participation in blue light responses, and regulation of abscisic acid synthesis will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams III WW and Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186: 390–398

    Article  CAS  Google Scholar 

  • Adams III WW, Demmig-Adams B, Verhoeven AS and Barker DH (1995) ‘Photoinhibition’ during winter stress: Involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22: 261–276

    CAS  Google Scholar 

  • Adamska I (1997) ELIPs—Light-induced stress proteins. Physiol Plant 100: 794–805

    Article  CAS  Google Scholar 

  • Åkerlund H-E, Arvidsson P-O, Bratt C and Carlsson M (1995) Partial purification of the violaxanthin de-epoxidase. In: Mathis P (ed) Photosynthesis — from Light to Biosphere, Vol IV, pp 103–106. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    CAS  PubMed  Google Scholar 

  • Andrews JR, Fryer MJ and Baker NR (1995) Consequences of LHCII deficiency for photosynthetic regulation in chlorina mutants of barley. Photosynth Res 44: 81–91

    Article  CAS  Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    CAS  PubMed  Google Scholar 

  • Arvidsson P-O, Bratt CE, Carlsson M and Åkerlund H-E (1996) Purification and identification of the violaxanthin deepoxidase as a 43 kDa protein. Photosynth Res 49: 119–129

    Article  CAS  Google Scholar 

  • Arvidsson P-O, Carlsson M, Stefánsson H, Albertsson P-Å and Åkerlund H-E (1997) Violaxanthin accessibility and temperature dependency for de-epoxidation in spinach thylakoid membranes. Photosynth Res 52: 39–48

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85: 235–241

    Article  CAS  Google Scholar 

  • Asada K and Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen SJ (eds) Photoinhibition, pp 227–287. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Audran C, Borel C, Frey A, Sotta B, Meyer C, Simonneau T and Marion-Poll A (1998) Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol 118: 1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297–303

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Sandoná D and Croce R (1997) Novel aspects of chlorophyll a/b-binding proteins. Physiol Plant 100: 769–779

    Article  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandona D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  CAS  PubMed  Google Scholar 

  • Bilger W and Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184: 226–234

    CAS  Google Scholar 

  • Bouvier F, ďHarlingue A, Hugueney P, Marin E, Marion-Poll A and Camara B (1996) Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum). J Biol Chem 271: 28861–28867

    CAS  PubMed  Google Scholar 

  • Bratt CE, Arvidsson P-O, Carlsson M and Åkerlund H-E (1995) Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentrations. Photosynth Res 45: 169–175

    Article  CAS  Google Scholar 

  • Briantais JM, Vernotte C, Picaud M and Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548: 128–138

    CAS  PubMed  Google Scholar 

  • Brink S, Bogsch EG, Edwards WR, Hynds PJ and Robinson C (1998) Targeting of thylakoid proteins by the ΔpH-driven twin-arginine translocation pathway requires a specific signal in the hydrophobic domain in conjunction with the twin-arginine motif. FEBS Lett 434: 425–430

    Article  CAS  PubMed  Google Scholar 

  • Bugos RC and Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci USA 93: 6320–6325

    Article  CAS  PubMed  Google Scholar 

  • Bugos RB, Hieber AD and Yamamoto HY (1998) Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem 273: 15321–15324

    Article  CAS  PubMed  Google Scholar 

  • Bugos RC, Chang SH and Yamamoto HY (1999) Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light. Plant Physiol 121: 207–214

    Article  CAS  PubMed  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P and Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 96: 1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Büch K, Stransky H and Hager A (1995) FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase. FEBS Lett 376: 45–48

    Article  PubMed  Google Scholar 

  • Conklin PL, Williams EH and Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93: 9970–9974

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Saracco SA and Norris SR (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154: 847–856

    CAS  PubMed  Google Scholar 

  • Cornell RB and Northwood IC (2000) Regulation of CTP: phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biol Sci 25:441–447

    CAS  Google Scholar 

  • Dau H (1994) Short-term adaptation of plants to changing light intensities and its relation to Photosystem II photochemistry and fluorescence emission. J Photochem Photobiol B 26: 3–27

    Article  CAS  Google Scholar 

  • Demmig B, Winter K, Krüger A and Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84: 218–224

    CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    CAS  Google Scholar 

  • Demmig-Adams B and Adams III WW (1992a) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15: 411–419

    CAS  Google Scholar 

  • Demmig-Adams B and Adams III WW (1992b) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Winter K, Krüger A and Czygan F-C (1989) Zeaxanthin synthesis, energy dissipation, and photoprotection of Photosystem II at chilling temperatures. Plant Physiol 90: 894–898

    CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM and Adams III WW (1996) In vivo functions of carotenoids in higher plants. FASEB J 10: 403–412

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams III WW and Grace SC (1997) Physiology of light tolerance in plants Horticultural Rev 18: 215–246

    CAS  Google Scholar 

  • Ederli L, Pasqualini S, Batini P and Antonielli M (1997) Photoinhibition and oxidative stress: Effects on xanthophyll cycle, scavenger enzymes and abscisic acid content in tobacco plants. J Plant Physiol 151: 422–428

    CAS  Google Scholar 

  • Eskling M and Åkerlund H-E (1998) Changes in the quantities of violaxanthin de-epoxidase, xanthophylls and ascorbate in spinach upon shift from low to high light. Photosynth Res 57: 41–50

    Article  CAS  Google Scholar 

  • Eskling M, Arvidsson P-O and Åkerlund H-E (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100: 806–816

    Article  CAS  Google Scholar 

  • Falbel T, Staehelin L and Adams III WW (1994) Analysis of xanthophyll cycle carotenoids and chlorophyll fluorescence in light intensity-dependent chlorophyll-deficient mutants of wheat and barley. Photosynth Res 42: 191–202

    Article  CAS  Google Scholar 

  • Färber A and Jahns P (1998) The xanthophyll cycle of higher plants: Influence of antenna size and membrane organization. Biochim Biophys Acta 1363: 47–58

    PubMed  Google Scholar 

  • Foyer CH (1993) Ascorbic acid. In: Alscher RG, Hess JL (eds) Antioxidants in Higher Plants, pp 31–58. CRC Press, Boca Raton

    Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 389–395

    Article  CAS  Google Scholar 

  • Frank HA, Bautista JA, Josue JS and Young AJ (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39: 2831–2837

    CAS  PubMed  Google Scholar 

  • Frechilla S, Zhu J, Talbott LD and Zeiger E (1999) Stomata from npq1, a zeaxanthin-less Arabidopsis mutant, lack a specific response to blue light. Plant Cell Physiol 40: 949–954

    CAS  PubMed  Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid Vitamin E (α-tocopherol). Plant Cell Environ 15: 381–392

    CAS  Google Scholar 

  • Funk C, Schröder WP, Napiwotzki A, Tjus SE, Renger G and Andersson B (1995) The PS II-S protein of higher plants: A new type of pigment-binding protein. Biochemistry 34: 11133–11141

    Article  CAS  Google Scholar 

  • Gillham DJ and Dodge AD (1986) Hydrogen-peroxide-scavenging systems within pea chloroplasts. Planta 167: 246–251

    Article  CAS  Google Scholar 

  • Gillham DJ and Dodge AD (1987) Chloroplast superoxide and hydrogen peroxide scavenging systems from pea leaves: Seasonal variations. Plant Sci 50: 105–109

    Article  CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197–209

    Article  CAS  Google Scholar 

  • Gilmore AM and Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35: 67–78

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants: Photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence. Photosynth Res 48: 171–187

    Article  CAS  Google Scholar 

  • Grotz B, Molnar P, Stransky H and Hager A (1999) Substrate specificity and functional aspects of violaxanthin de-epoxidase, an enzyme of the xanthophyll cycle. J Plant Physiol 154: 437–446

    CAS  Google Scholar 

  • Gruszecki WI (1995) Different aspects of protective activity of the xanthophyll cycle under stress conditions. Acta Physiol Plant 17: 145–152

    CAS  Google Scholar 

  • Gruszecki WI and Krupa Z (1993) LHCII, the major light-harvesting pigment-protein complex is a zeaxanthin epoxidase. Biochim Biophys Acta 1144: 97–101

    CAS  Google Scholar 

  • Gruszecki WI and Strzalka K (1991) Does the xanthophyll cycle take part in the regulation of fluidity of the membrane? Biochim Biophys Acta 1060: 310–314

    CAS  Google Scholar 

  • Gruszecki WI, Matula M, Ko-chi N, Koyama Y and Krupa Z (1997) Cis-trans-isomerization of violaxanthin in LHCII: Violaxanthin isomerization cycle within the violaxanthin cycle. Biochim Biophys Acta 1319: 267–274

    Google Scholar 

  • Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktion. Ber Dtsch Bot Ges 79: 94–107

    CAS  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. Planta 89: 224–243

    Article  CAS  Google Scholar 

  • Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyll umwandlungen im Chloroplasten. Ber Dtsch Bot Ges 88: 27–44

    CAS  Google Scholar 

  • Hager A and Holocher K (1994) Localisation of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192: 581–589

    Article  CAS  Google Scholar 

  • Härtel H, Lokstein H, Grimm B and Rank B (1996) Kinetic studies on the xanthophyll cycle in barley leaves: Influence of antenna size and relations to nonphotochemical chlorophyll fluorescence quenching. Plant Physiol 110: 471–482

    PubMed  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3: 147–151

    Google Scholar 

  • Havaux M and Gruszecki WI (1993) Heat-and light-induced chlorophyll and fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: Indications of a regulatory effect of zeaxanthin on thylakoid membrane fluidity. Photochem Photobiol 58: 607–614

    CAS  Google Scholar 

  • Havaux M and Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96: 8762–8767

    Article  CAS  PubMed  Google Scholar 

  • Havaux M and Tardy F (1996) Temperature-dependent adjustment of the thermal stability of Photosystem II in vivo: Possible involvement of xanthophyll-cycle pigments. Planta 198: 324–333

    Article  CAS  Google Scholar 

  • Havaux M, Gruszecki WI, Dupont I and Leblanc RM (1991) Increased heat emission and its relationship to the xanthophyll cycle in pea leaves exposed to strong light stress. J Photochem Photobiol 8: 361–370

    CAS  Google Scholar 

  • Havaux M, Tardy F, Ravenel J, Chanu D and Parot P (1996) Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ 19: 1359–1368

    CAS  Google Scholar 

  • Havir EA, Tausta SL and Peterson RB (1997) Purification and properties of violaxanthinde-epoxidase from spinach. Plant Science 123: 57–66

    Article  CAS  Google Scholar 

  • Heyde S and Jahns P (1998) The kinetics of zeaxanthin formation is retarded by dicyclohexyl carbodiimide. Plant Physiol 117: 659–665

    Article  CAS  PubMed  Google Scholar 

  • Horton P and Lee P (1985) Phosphorylation of chloroplast membrane proteins partially protects against photoinhibition. Planta 165: 37–42

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G and Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292: 1–4

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV and Walters R (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  PubMed  Google Scholar 

  • Hurry, V, Anderson JM, Chow WS and Osmond CB (1997) Accumulation of zeaxanthin in abscisic acid-deficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiol 113: 639–648

    CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo P, Arrese-Igor C and Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116: 173–181

    Article  CAS  Google Scholar 

  • Jahns P (1995) The xanthophyll cycle in intermittent light-grown pea plants: Possible functions of chlorophyll a/b-binding proteins. Plant Physiol 108: 149–156

    CAS  PubMed  Google Scholar 

  • Jahns P and Heyde S (1999) Dicyclohexyl carbodiimide alters the pH dependence of violaxanthin de-epoxidation. Planta 207: 393–400

    Article  CAS  Google Scholar 

  • Jahns P and Krause GH (1994) Xanthophyll cycle and energy-dependent fluorescence quenching in leaves from pea plants grown under intermittent light. Planta 192: 176–182

    CAS  Google Scholar 

  • Jahns P and Schweig S (1995) Energy-dependent fluorescence quenching in thylakoids from intermittent light grown pea plants: Evidence for an interaction of zeaxanthin and the chlorophyll a/b binding protein CP26. Plant Physiol Biochem 33: 683–687

    CAS  Google Scholar 

  • Jahns P, Depka P and Trebst A (2000) Xanthophyll cycle mutants from Chlamydomonas reinhardtii indicate a role of zeaxanthin in D1 protein turnover. Plant Physiol Biochem 38: 371–376

    Article  CAS  Google Scholar 

  • Juhler R, Andreasson E, Yu S-G and Albertsson P-Å (1993) Composition of photosynthetic pigments in thylakoid membrane vesicles from spinach, Photosynth Res 35: 171–178

    CAS  Google Scholar 

  • Kawano M and Kuwabara T (2000) pH-dependent reversible inhibition of violaxanthin de-epoxidase by pepstatin related to protonation-induced structural change of the enzyme. FEBS Lett 481: 101–104

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Jorna ML, Brinkenhorst-van der Swan DLC and Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in nongerminating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynth. Theor Appl Genet 61: 385–393

    CAS  Google Scholar 

  • Koroleva OY, Thiele A and Krause GH (1995) Increased xanthophyll cycle activity as an important factor in acclimation of the photosynthetic apparatus to high-light stress at low temperatures. In: Mathis P (eds) Photosynthesis: From Light to Biosphere, Vol IV, pp 425–428. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74: 566–574

    CAS  Google Scholar 

  • Krause GH (1994) Photoinhibition induced by low temperatures. In: Baker NR, Bowyer JR (eds) Environmental Plant Biology Series: Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 331–348. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Krause GH and Behrend U (1986) pH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett 200: 298–302

    Article  CAS  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Król M, Spangfort MD, Huner NPA, Öquist G, Gustafsson P and Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol 107: 873–883

    PubMed  Google Scholar 

  • Kuwabara T, Hasegawa M, Kawano M and Takaichi S (1999) Characterization of violaxanthin de-epoxidase purified in the presence of Tween 20: effects of dithiothreitol and pepstatin A. Plant Cell Physiol 40: 1119–1126

    CAS  PubMed  Google Scholar 

  • Lee A-C and Thornber JP (1995) Analysis of the pigment stoichiometry of pigment-protein complexesfrom barley (Hordeum vulgare). Plant Physiol 107: 565–574

    Article  CAS  PubMed  Google Scholar 

  • Leipner J, Stamp P and Fracheboud Y (2000) Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta 210: 964–969

    Article  CAS  PubMed  Google Scholar 

  • Leverenz JW, Öquist G and Wingsle G (1992) Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light. Physiol Plant 85: 495–502

    Article  CAS  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 126: 213–222

    Google Scholar 

  • Liang J, Zhang J and Wong MH (1997) Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying. Photosynth Res 51: 149–159

    Article  CAS  Google Scholar 

  • Logan BA, Barker DH, Demmig-Adams B and Adams III WW (1996) Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ 19: 1083–1090

    CAS  Google Scholar 

  • Lokstein H, Härtel H, Hoffmann P, Woitke P and Renger G (1994) The role of light-harvesting complex II in excess excitation energy dissipation: An in-vivo fluorescence study on the origin of high-energy quenching. J Photochem Photobiol 26: 175–184

    CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A and Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15: 2331–2342

    CAS  PubMed  Google Scholar 

  • Neubauer C and Yamamoto HY (1994) Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts. Photosynth Res 39: 137–147

    Article  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S and von Heijne G (1997) Identification of procaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997a) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9: 1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997b) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94: 14162–14167

    Article  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134

    Article  CAS  PubMed  Google Scholar 

  • Palmer JM, Warpeha KMF and Briggs WR (1996) Evidence that zeaxanthin is not the photoreceptor for phototropism in maize coleoptiles. Plant Physiol 110: 1323–1328

    CAS  PubMed  Google Scholar 

  • Parry AD, Babiano MJ and Horgan R (1990) The role of cis-carotenoids in abscisic acid biosynthesis. Planta 182: 118–128

    Article  CAS  Google Scholar 

  • Peter GF and Thornber JP (1991) Biochemical composition and organization of higher plant Photosystem II light-harvesting pigment-proteins. J Biol Chem 25: 16745–16754

    Google Scholar 

  • Peterson RB and Havir EA (2000) A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Planta 210: 205–214

    Article  CAS  PubMed  Google Scholar 

  • Pfündel EE and Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42: 89–109

    Article  Google Scholar 

  • Pfündel EE and Dilley RA (1993) The pH dependence of violaxanthin de-epoxidation in isolated pea chloroplasts. Plant Physiol 101: 65–71

    PubMed  Google Scholar 

  • Phillip Y and Young AJ (1995) Occurrence of the carotenoid lactucaxanthin in higher plant LHCII. Photosynth Res 43: 273–282

    Article  CAS  Google Scholar 

  • Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 1627–1639

    Article  CAS  PubMed  Google Scholar 

  • Pogson BJ, Niyogi KK, Björkman O and DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95: 13324–13329

    Article  CAS  PubMed  Google Scholar 

  • Polivka T, Herek JL, Zigmantas D, Åkerlund H-E and Sundström V (1999) Direct observation of the (forbidden) Sl state in carotenoids. Proc Natl Acad Sci USA 96: 4914–4917

    Article  CAS  PubMed  Google Scholar 

  • Quiñones MA and Zeiger E (1994) A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles. Science 264: 558–561

    Google Scholar 

  • Rockholm DC and Yamamoto HY (1996) Violaxanthin de-epoxidase. Purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalacto-syldiacyl glyceride. Plant Physiol 110: 697–703

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Young AJ, Pascal AA and Horton P (1994) The effects of illumination on the xanthophyll composition of the Photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol 104: 227–234

    CAS  PubMed  Google Scholar 

  • Ruban AV, Young AJ and Horton P (1996) Dynamic properties of the minor chlorophyll a/b binding proteins of Photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry 35: 674–678

    Article  CAS  PubMed  Google Scholar 

  • Ruban A V, Phillip D, Young AJ and Horton P (1997) Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of Photosystem II of plants. Biochemistry 36: 7855–7859

    Article  CAS  PubMed  Google Scholar 

  • Sapozhnikov DI, Krasovskaya TA and Maevskaya AN (1957) Change in the interrelationship of the basic carotenoids of the plastids of green leaves under the action of light. Dokl Akad Nauk USSR 113: 465–467

    CAS  Google Scholar 

  • Sarry J-E, Montillet J-L, Sauvaire Y and Havaux M (1994) The protective function of the xanthophyll cycle in photosynthesis. FEBS Lett 353: 147–150

    Article  CAS  PubMed  Google Scholar 

  • Schäfer C, Schmid V and Roos M (1994) Characterization of high-light-induced increases in xanthophyll cycle pigment and lutein contents in photoautotrophic cell cultures. J Photochem Photobiol 22: 67–75

    Google Scholar 

  • Schindler C and Lichtenthaler HK (1996) Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. J Plant Physiol 148: 399–412

    CAS  Google Scholar 

  • Schmid V and Schäfer C (1994) Alterations of the chlorophyll-protein pattern in chronically photoinhibited Chenopodium rubrum cells. Planta 192: 473–479

    Article  CAS  Google Scholar 

  • Schöner S and Krause GH (1990) Protective systems against active oxygen species in spinach: Response to cold acclimation in excess light. Planta 180: 383–389

    Google Scholar 

  • Schumann G, Nurnberger H, Sandmann G and Krugel H (1996) Activation and analysis of cryptic crt genes for carotenoid biosynthesis from Streptomyces griseus. Mol Gen Genet 252: 658–666

    CAS  PubMed  Google Scholar 

  • Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J and Miller DT (1994) Dietary carotenoids, vitamins A, C, and E, and advanced agerelated macular degeneration. JAMA 172: 1413–1420

    Google Scholar 

  • Siefermann D and Yamamoto HY (1975a) NADPH and oxygen-dependent epoxidation of zeaxanthin in isolated chloroplasts. Biochem Biophys Res Commun 62: 456–461

    Article  CAS  PubMed  Google Scholar 

  • Siefermann D and Yamamoto HY (1975b) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch Biochem Biophys 171: 70–77

    Article  CAS  PubMed  Google Scholar 

  • Siefermann D and Yamamoto H (1976) Light-induced de-epoxidation in lettuce chloroplasts. Plant Physiol 57: 939–940

    CAS  Google Scholar 

  • Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811: 325–355

    CAS  Google Scholar 

  • Srivastava A and Zeiger E (1995) Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia faba leaves. Plant Cell Environ 18: 813–817

    CAS  Google Scholar 

  • Staehelin LA and Arntzen CJ (1983) Regulation of chloroplast membrane function: Protein phosphorylation changes the spatial organization of membrane components. J Cell Biol 97: 1327–1337

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ and Butler WL (1976) Correlation of absorbance changes and thylakoid fusion with the induction of oxygen evolution in bean leaves greened by brief flashes. Plant Physiol 58: 371–376

    CAS  Google Scholar 

  • Sun Z, Gantt E and Cunningham Jr FX (1996) Cloning and functional analysis of the β-carotene hydroxy lase of Arabidopsis thaliana. J Biol Chem 271: 24349–24352

    CAS  PubMed  Google Scholar 

  • Tardy F and Havaux M (1996) Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. J Photochem Photobiol 34: 87–94

    CAS  Google Scholar 

  • Tardy F and Havaux M (1997) Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim Biophys Acta 1330: 179–193

    CAS  PubMed  Google Scholar 

  • Thayer SS and Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23: 331–343

    Article  CAS  Google Scholar 

  • Thayer SS and Björkman O (1992) Carotenoid distribution and de-epoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth Res 33: 213–225

    Article  CAS  Google Scholar 

  • Thiele A and Krause GH (1994) Xanthophyll cycle and thermal energy dissipation in Photosystem II: Relationship between zeaxanthin formation, energy-dependent fluorescence quenching and photoinhibition. J Plant Physiol 144: 324–332

    CAS  Google Scholar 

  • Thiele A, Schirwitz K, Winter K and Krause GH (1996) Increased xanthophyll cycle activity and reduced D1 protein inactivation related to photoinhibition in two plant systems acclimated to excess light. Plant Science 115: 237–250

    Article  CAS  Google Scholar 

  • Thompson AJ, Jackson AC, Parker RA, Morpeth, DR, Burbidge A and Taylor IB (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol 42: 833–845

    Article  CAS  PubMed  Google Scholar 

  • Tyystjärvi E and Aro E-M (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93: 2213–2218

    PubMed  Google Scholar 

  • von Heijne G (1983) Patterns ofamino acids near signal-sequence cleavage sites. Eur J Biochem. 133: 17–21

    Article  Google Scholar 

  • von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184: 99–105

    Google Scholar 

  • Walters RG, Ruban AV and Horton P (1996) Identification of proton-active residues in a higher plant light-harvesting complex. Proc Natl Acad Sci USA 93: 14204–14209

    Article  CAS  PubMed  Google Scholar 

  • Wentworth M, Ruban AV and Horton P (2000) Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin. FEBS Lett 471: 71–74

    Article  CAS  PubMed  Google Scholar 

  • Xu CC, Jeon YA, Hwang HJ and Lee CH (1999) Suppression of zeaxanthin epoxidation by chloroplast phosphatase inhibitors in rice leaves. Plant Science 146: 27–34

    Article  CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51: 639–648

    CAS  Google Scholar 

  • Yamamoto HY and Bassi R (1996) Carotenoids: Localisation and function. In: Ort RR, Yocum CF, (eds) Oxygenic photosynthesis: The light reactions, pp 539–563. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yamamoto HY and Higashi RM (1978) Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch Biochem Biophys 190: 514–522

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY and Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267: 538–543

    CAS  PubMed  Google Scholar 

  • Yamamoto HY, Nakayama TOM and Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97: 168–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Eskling, M., Emanuelsson, A., Åkerlund, HE. (2001). Enzymes and Mechanisms for Violaxanthin-zeaxanthin Conversion. In: Aro, EM., Andersson, B. (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, vol 11. Springer, Dordrecht. https://doi.org/10.1007/0-306-48148-0_25

Download citation

  • DOI: https://doi.org/10.1007/0-306-48148-0_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6332-3

  • Online ISBN: 978-0-306-48148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics