Skip to main content

Plastid RNA Polymerases in Higher Plants

  • Chapter
Regulation of Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 11))

Summary

Plastids evolved from ancestral cyanobacteria through gradual conversion of an endosymbiont to a plant organelle. Plastids maintained a cyanobacterium-like (eubacterial) transcription machinery. The eubacterial core-enzyme consists of four plastid-encoded subunits (α2, β β′ and β″), and may associate with multiple, nuclear-encoded σ70-type specificity factors. This holo-enzyme is the plastid-encoded plastid RNA polymerase (PEP). The promoters recognized by the PEP are of σ70-type with conserved −10 (TATAAT) and −35 (TTGACA) elements. In addition, species-specific cis-elements and trans-factors regulate psbA, psbD and rrn16 promoter activity. The PEP in chloroplasts associates with up to eight auxiliary proteins. One of them is the plastid transcription kinase (PTK), an enzyme which regulates PEP transcription by σ factor phosphorylation. PTK activity itself is regulated by phosphorylation and the redox state of plastids.

In addition to the eubacterial enzyme, plastids have acquired a second, phage-type RNA polymerase (NEP, nuclear-encoded plastid RNA polymerase). NEP probably evolved by duplication of the mitochondrial transcription machinery. A nuclear gene encodes the NEP catalytic core with a plastid targeting N-terminal sequence. The NEP subunit composition is likely to be similar to the mitochondrial enzyme, which associates with at least two specificity factors. NEP recognizes two distinct promoters. Type-I NEP promoters are ∼15 nt AT-rich region upstream (−14 to +1) of the transcription initiation site (+1) with a conserved YRTA core, a feature shared with plant mitochondrial promoters. Type-II NEP promoters are mainly downstream (−5 to +25) of the transcription initiation site.

There is a division of labor between the two plastid RNA polymerases. Photosynthetic genes and operons have PEP promoters, whereas most non-photosynthetic genes involved in housekeeping functions, such as transcription and translation, have promoters for both RNA polymerases. The NEP promoter(s) of these genes are, with a few exceptions, silent in chloroplasts. Only a few genes are transcribed exclusively from a NEP promoter. One of these is the rpoB operon encoding three of the four PEP core subunits. Through transcription of the PEP genes by the NEP the nucleus indirectly controls transcription of plastid genes, there by integrating the endosymbiont-turned-organelle into the developmental network of multicellular plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison LA and Maliga P (1995) Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J 14: 3721–3730

    CAS  PubMed  Google Scholar 

  • Allison LA, Simon LD and Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15: 2802–2809

    CAS  PubMed  Google Scholar 

  • Baeza L, Bertrand A, Mache R and Lerbs-Mache S (1991) Characterization of a protein binding sequence in the promoter region of the 16S rRNA gene of the spinach chloroplast genome. Nucleic Acids Res 19: 3577–3581

    CAS  PubMed  Google Scholar 

  • Baginsky S, Tiller K and Link G (1997) Transcription factor phosphorylation by a protein kinase associated with chloroplast RNA polymerase from mustard (Sinapis alba). Plant Mol Biol 34: 181–189

    Article  CAS  PubMed  Google Scholar 

  • Baginsky S, Tiller K, Pfannschmidt T and Link G (1999) PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription. Plant Mol Biol 39: 1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner BJ, Rapp JC and Mullet JE (1993) Plastid genes encoding the transcription/translation apparatus are differentially transcribed early inbarley (Hordeum vulgare) chloroplast development: Evidence for selective stabilization of psbA mRNA. Plant Physiol 101: 781–791

    CAS  PubMed  Google Scholar 

  • Binder S and Brennicke A (1993) Transcription initiation sites in mitochondria of Oenothera berteriana. J BiolChem 268: 7849–7855

    CAS  Google Scholar 

  • Bogorad L (1991) Replication and transcription of plastid DNA. In: Bogorad L and Vasil IK (eds) The Molecular Biology of Plastids, pp 93–124. Academic Press, San Diego

    Google Scholar 

  • Bown J, Barne K, Minchin S and Busby S (1997) Extended-10 promoters. Nucleic Acids Mol. Biol. 11: 41–52

    CAS  Google Scholar 

  • Boyer SK and Mullet JE (1986) Characterization of P. sativum chloroplast psbA transcripts produced in vivo and in vitro and in E. coli. Plant Mol Biol 6: 229–243

    Article  CAS  Google Scholar 

  • Boyer SK and Mullet JE (1988) Sequence and transcript map of barley chloroplast psbA gene. Nucleic Acids Res 16: 8184

    CAS  PubMed  Google Scholar 

  • Bradley D and Gatenby AA (1985) Mutational analysis of the maize chloroplast ATPase-beta subunit gene promoter: The isolation of promoter mutants in E. coli and their characterization in a chloroplast in vitro transcription system. EMBO J 4: 3641–3648

    CAS  PubMed  Google Scholar 

  • Brahamsha B and Haselkorn R (1991) Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173: 2442–2450

    CAS  PubMed  Google Scholar 

  • Briat JF, Laulhere JP and Mache R (1979) Transcription activity of a DNA-protein complex isolated from spinach plastids. Eur J Biochem 98: 285–292

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Auchincloss AH, Covello PS, Gray MW, Menassa R and Singh M (1991) Characterization of transcription initiation sites in the soybean mitochondrial genome allows identification of a transcription-associated sequence motif. Mol Gen Genet 228: 345–355

    Article  CAS  PubMed  Google Scholar 

  • Bülow S and Link G (1988) Sigma-like activity from mustard (Sinapis alba L.) chloroplasts confering DNA-binding and transcription specificity to E. coli core RNA polymerase. Plant Mol Biol 10: 349–357

    Article  Google Scholar 

  • Bünger W and Feierabend J (1980) Capacity for RNA synthesis in 70S ribosome-deficient plastids of heat-bleached rye leaves. Planta 149: 163–169

    Article  Google Scholar 

  • Busby S and Ebright RH (1994) Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79: 743–746

    Article  CAS  PubMed  Google Scholar 

  • Caoile AGFS and Stern DB (1997) A conserved core element is functionally important for maize mitochondrial promoter activity in vitro. Nucleic Acids Res 25: 4055–4060

    Article  CAS  PubMed  Google Scholar 

  • Cermakian N, Ikeda TM, Cedergren R and Gray MW (1996) Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread through out the eukaryotic lineage. Nucleic Acids Res 24: 648–654

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Sheen J, Bligny M, Niwa Y, Lerbs-Mache S and Stern DB (1999) Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell 11: 911–926

    Article  CAS  PubMed  Google Scholar 

  • Cheng YS, Lin CH and Chen LJ (1997) Transcription and processing of the gene for spinach chloroplast threonine tRNA in a homologous in vitro system. Biochem Biophys Res Commun 233: 380–385

    Article  CAS  PubMed  Google Scholar 

  • Christopher DA and Hoffer PH (1998) DET1 represses a chloroplast blue light-responsive promoter in a developmental and tissue-specific manner in Arabidopsis thaliana. Plant J 14: 1–11

    Article  CAS  PubMed  Google Scholar 

  • Christopher DA, Kim M and Mullet JE (1992) A novel light-regulated promoter is conserved in cereal and dicot chloroplasts. Plant Cell 4: 785–798

    Article  CAS  PubMed  Google Scholar 

  • Christopher DA, Li XL, Kim M and Mullet JE (1997) Involvement of protein kinase and extraplastidic Serine/Threonine protein phosphatases in signaling pathways regulating plastid transcription and the psbD blue light-responsive promoter in barley. Plant Physiol 113: 1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Covello PS and Gray MW (1991) Sequence analysis of wheat mitochondrial transcripts capped in vitro: Definitive identification of transcription initiation sites. Curr Genet 20: 245–252

    Article  CAS  PubMed  Google Scholar 

  • DePamphilis CW and Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339

    Google Scholar 

  • DuBell AN and Mullet JE (1995) Differential transcription of pea chloroplast genes during light-induced leaf development. Plant Physiol 109: 105–112

    Google Scholar 

  • Eisermann A, Tiller K and Link G (1990) In vitro transcription and DNA binding characteristics of chloroplast and etioplast extracts from mustard (Sinapis alba) indicate differential usage of the psbA promoter. EMBO J 9: 3981–3987

    CAS  PubMed  Google Scholar 

  • Ems SC, Morden CW, Dixon CK, Wolfe KH, DePamphilis CW and Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29: 721–733

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Schmidt A and Krupinska K (1993) Characterization of plastid DNA transcription in ribosome deficient plastids of heat-bleached barley leaves. J. Plant Physiol. 141: 176–181

    CAS  Google Scholar 

  • Fischer N, Stampacchia O, Redding K and Rochaix JD (1996) Selectable Marker Recycling In the Chloroplast. Mol Gen Genet 251: 373–380

    CAS  PubMed  Google Scholar 

  • Galli G, Hofstetter H and Birnstil ML (1981) Two conserved blocks within eukaryotic tRNA genes are major promoter elements. Nature 294: 626–631

    Article  CAS  PubMed  Google Scholar 

  • Gatenby AA, Castleton JA and Saul MW (1981) Expression in E. coli of maize and wheat chloroplast genes for large subunit of ribulose bisphosphate carboxylase. Nature 291: 117–121

    Article  CAS  PubMed  Google Scholar 

  • Geiduschek EP, Bardeleben C, Joazeiro CA, Kassavetis GA and Whitehall S (1995) Yeast RNA polymerase III: Transcription complexes and RNA synthesis. Braz J Med Biol Res 28: 147–159

    CAS  PubMed  Google Scholar 

  • Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Genet Dev 3: 884–890

    Article  CAS  PubMed  Google Scholar 

  • Gray MW and Lang BF (1998) Transcription in chloroplasts and mitochondria: A tale of two polymerases. Trends Microbiol 6: 1–3

    Article  CAS  PubMed  Google Scholar 

  • Greenberg BM, Narita JO, DeLuca-Flaherty C, Gruissem W, Rushlow KA and Hallick RB (1984) Evidence for two RNA polymerase activities in Euglena gracilis chloroplasts. J Biol Chem 259: 14880–14887

    CAS  PubMed  Google Scholar 

  • Gruber TM and Bryant DA (1997) Molecular systematic studies of eubacteria, using sigma 70-type sigma factors of group 1 and group 2. J Bacteriol 179: 1734–747

    CAS  PubMed  Google Scholar 

  • Gruissem W and Tonkyn JC (1993) Control mechanisms of plastid gene expression. Crit Rev Plant Sci 12: 19–55

    CAS  Google Scholar 

  • Gruissem W and Zurawski G (1985) Analysis of promoter regions for the spinach chloroplast rbcL, atpB and psbA genes. EMBO J 4: 3375–3383

    CAS  PubMed  Google Scholar 

  • Gruissem W, Greenberg BM, Zurawski G, Prescott DM and Hallick RB (1983a) Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Cell 35: 815–828

    Article  CAS  PubMed  Google Scholar 

  • Gruissem W, Narita JO, Greenberg BM, Prescott DM and Hallick RB (1983b) Selective in vitro transcription of chloroplast genes. J Cell Biochem 22: 31–46

    Article  CAS  PubMed  Google Scholar 

  • Gruissem W, Elsner-Menzel C, Latshaw S, Narita JO, Schaffer MA and Zurawski G (1986a) A subpopulation of spinach chloroplast tRNA genes does not require upstream promoter elements for transcription. Nucleic Acids Res 14: 7541–7556

    CAS  PubMed  Google Scholar 

  • Gruissem W, Greenberg BM, Zurawski G and Hallick RB (1986b) Chloroplast gene expression and promoter identification in chloroplast extracts. Meth Enzymol 118: 253–270

    CAS  PubMed  Google Scholar 

  • Gruissem W, Barkan A, Deng XW and Stern D (1988) Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends Genet 4: 258–263

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PTJ, Allison LA and Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16: 4041–4048

    Article  CAS  PubMed  Google Scholar 

  • Hallick RB, Lipper C, Richards OC and Rutter WJ (1976) Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochemistry 15: 3039–3045

    Article  CAS  PubMed  Google Scholar 

  • Han CD, Patrie W, Polacco M and Coe EH (1993) Aberrations in plastid transcripts and deficiency of plastid DNA in striped and albino mutants in maize. Planta 191: 552–563

    Article  CAS  Google Scholar 

  • Hanley-Bowdoin L and Chua N-H (1988) Transcription of the wheat chloroplast gene that encodes the 32 kd polypeptide. Plant Mol Biol 10: 303–310

    Article  CAS  Google Scholar 

  • Hanley-Bowdoin L, Orozco EMJ and Chua NH (1985) In vitro synthesis and processing of a maize chloroplast transcript encoded by the ribulose 1,5-bisphosphate carboxylase large subunit gene. Mol Cell Biol 5: 2733–2745

    CAS  PubMed  Google Scholar 

  • Hartmann G, Honikel KO, Knusel F and Nuesch J (1967) The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta 145: 843–844

    CAS  PubMed  Google Scholar 

  • Hatzack F, Dombrowski S, Brennicke A and Binder S (1998) Characterization of DNA-binding proteins from pea mitochondria. Plant Physiol 116: 519–527

    Article  CAS  PubMed  Google Scholar 

  • Hedtke B, Börner T and Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277: 809–811

    Article  CAS  PubMed  Google Scholar 

  • Hedtke B, Meixner M, Gillandt S, Richter E, Börner T and Weihe A (1999) Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. Plant J 17: 557–561

    Article  CAS  PubMed  Google Scholar 

  • Hess WR and Börner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190: 1–59

    CAS  PubMed  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR and Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: Evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12: 563–571

    CAS  PubMed  Google Scholar 

  • Hoffer PH and Christopher DA (1997) Structure and blue-light-responsive transcription of a chloroplast psbD promoter from Arabidopsis thaliana. Plant Physiol 115: 213–222

    Article  CAS  PubMed  Google Scholar 

  • Holschuh K, Bottomley W and Whitfeld PR (1984) Structure of the spinach chloroplast genes for the D2 and 44 kd reaction-centre proteins of photosystem II and for tRNASer (UGA). Nucleic Acids Res 12: 8819–8834

    CAS  PubMed  Google Scholar 

  • Hu J and Bogorad L (1990) Maize chloroplast RNA polymerase: The 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci USA 87: 1531–1535

    CAS  PubMed  Google Scholar 

  • Hu J, Troxler RF and Bogorad L (1991) Maize chloroplast RNA polymerase: The 78-kilodalton polypeptide is encoded by the plastid rpoC1 gene. Nucleic Acids Res 19: 3431–3434

    CAS  PubMed  Google Scholar 

  • Hübschmann T and Börner T (1998) Characterisation of transcript initiation sites in ribosome-deficient barley plastids. Plant Mol Biol 3.6: 493–496

    Google Scholar 

  • Igloi GL and Kössel H (1992) The transcriptional apparatus of chloroplasts. Crit Rev Plant Sci 10: 525–558

    CAS  Google Scholar 

  • Ikeda TM and Gray MW (1999a) Identification and characterization of T7/T3 bacteriophage-like RNA polymerase sequences in wheat. Plant Mol Biol 40: 567–578

    Article  CAS  PubMed  Google Scholar 

  • Ikeda TM and Gray MW (1999b) Characterization of a DNA-binding protein implicated in transcription in wheat mitochondria. Mol Cell Biol 19: 8113–8122

    CAS  PubMed  Google Scholar 

  • Iratni R, Diederich L, Harrak H, Bligny M and Lerbs-Mache S (1997) Organ-specific transcription of the rrn operon in spinach plastids. J Biol Chem 272: 13676–13682

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Niwa Y, Satoh K and Kobayashi H (1997a) Evidence for transcriptional regulation of plastid photosynthesis genes in Arabidopsis thaliana roots. Plant Physiol 114: 623–630

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Shimizu M, Yoshimoto K, Niwa Y, Satoh K, Yokota A and Kobayashi H (1997b) Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of sigma 70 factors of bacterial RNA polymerases in Arabidopsis thaliana. Proc Natl Acad Sci USA 94: 14948–14953

    Article  CAS  PubMed  Google Scholar 

  • Jaehning JA (1993) Mitochondrial transcription: Is a pattern emerging? Mol Microbiol 8: 1–4

    CAS  PubMed  Google Scholar 

  • Jahn D (1992) Expression of the Chlamydomonas reinhardtii chloroplast tRNA(Glu) gene in a homologous in vitro transcription system is independent of upstream promoter elements. Arch Biochem Biophys 298: 505–513

    Article  CAS  PubMed  Google Scholar 

  • Jolly SO and Bogorad L (1980) Preferential transcription of cloned maize chloroplast DNA sequences by maize chloroplast RNA polymerase. Proc Natl Acad Sci USA 77: 822–826

    CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    CAS  PubMed  Google Scholar 

  • Kapoor S and Sugiura M (1999) Identification of two essential sequence elements in the nonconsensus Type II PatpB-290 plastid promoter by using plastid transcription extracts from cultured tobacco BY-2 cells. Plant Cell 11: 1799–1810

    Article  CAS  PubMed  Google Scholar 

  • Kapoor S, Suzuki JY and Sugiura M (1997) Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J 11: 327–337

    Article  CAS  PubMed  Google Scholar 

  • Kestermann M, Neukirchen S, Kloppstech K and Link G (1998) Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba). Nucleic Acids Res 26: 2747–2753

    Article  CAS  PubMed  Google Scholar 

  • Kidd GH and Bogorad L (1980) A facile procedure for purifying maize chloroplast RNA polymerase from whole cell homogenates. Biochim Biophys Acta 609: 14–30

    CAS  PubMed  Google Scholar 

  • Kim Mi and Mullet JE (1995) Identification of a sequence-specific DNA binding factor required for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter. Plant Cell 7: 1445–1457

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Christopher DA and Mullet JE (1999a) ADP-Dependent phosphorylation regulates association of a DNA-binding complex with the barley chloroplast psbD blue-light-responsive promoter. Plant Physiol 119: 663–670

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Thum KE, Morishige DT and Mullet JE (1999b) Detailed architecture of the barley chloroplast psbD-psbC blue light-responsive promoter. J Biol Chem 274: 4684–4692

    CAS  PubMed  Google Scholar 

  • Klein RR and Mullet JE (1990) Light-induced transcription of chloroplast genes.psbA transcription is differentially enhanced in illuminated barley. J Biol Chem 265: 1895–1902

    CAS  PubMed  Google Scholar 

  • Lakhani S, Khanna NC and Tewari KK (1992) Two distinct transcriptional activities of pea (Pisum sativum) chloroplasts share immunochemically related functional polypeptides. Biochem J 286: 833–841

    CAS  PubMed  Google Scholar 

  • Lam E, Hanley-Bowdoin L and Chua NH (1988) Characterization of a chloroplast sequence-specific DNA binding factor. J Biol Chem 263: 8288–8293

    CAS  PubMed  Google Scholar 

  • Lerbs S, Briat JF and Mache R (1983) Chloroplast RNA polymerase from spinach: Purification and DNA-binding proteins. Plant Mol Biol 2: 67–74

    Article  CAS  Google Scholar 

  • Lerbs S, Bräutigam E and Parthier B (1985) Polypeptides in DNA-dependent RNA polymerase of spinach chloroplasts: characterization by antibody-linked polymerase assay and determination of sites of synthesis. EMBO J 4: 1661–1666

    CAS  PubMed  Google Scholar 

  • Lerbs S, Bräutigam E and Mache R (1988) DNA-dependent RNA polymerase of spinach chloroplasts: characterization of α-like and σ-like polypeptides. Mol Gen Genet 211: 459–464

    Article  CAS  Google Scholar 

  • Lerbs-Mache S (1993) The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: Single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc Natl Acad Sci USA 90: 5509–5513

    CAS  PubMed  Google Scholar 

  • Liere K and Link G (1994) Structure and expression characteristics of the chloroplast DNA region containing the split gene for tRNA(Gly) (UCC) from mustard (Sinapis alba L.). Curr Genet 26: 557–563

    Article  CAS  Google Scholar 

  • Liere K and Maliga P (1999a) In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J 18: 249–257

    Article  CAS  PubMed  Google Scholar 

  • Liere K and Maliga P (1999b) Novel in vitro transcription assay indicates that the accD NEP promoter is contained in a 19 bp fragment. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 79–84. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Link G (1984) DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro transcription system from mustard (Sinapis alba L.). EMBO J 3: 1697–1704

    CAS  PubMed  Google Scholar 

  • Link G (1994) Plastid differentiation: Organelle promoters and transcription factors. In: Nover L (ed) Plant Promoters and Transcription Factors—Results and Problems in Cell Differentiation, Vol 20, pp 65–85. Springer Verlag, Berlin

    Google Scholar 

  • Link G (1996) Green life: Control of chloroplast gene transcription. Bioessays 18: 465–471

    Article  CAS  Google Scholar 

  • Link G and Langridge U (1984) Structure of the chloroplast gene for the precursor of the Mr 32,000 Photosystem II protein from mustard (Sinapis alba L.). Nucleic Acids Res 12: 945–958

    CAS  PubMed  Google Scholar 

  • Little MC and Hallick RB (1988) Chloroplast rpoA, rpoB, and rpoC genes specify at least three components of a chloroplast DNA-dependent RNA polymerase active in tRNA and mRNA transcription. J Biol Chem 263: 14302–14307

    CAS  PubMed  Google Scholar 

  • Liu B and Troxler RF (1996) Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNA polymerase sigma factor in Cyanidium caldarium. Proc Natl Acad Sci USA 93: 3313–3318

    CAS  PubMed  Google Scholar 

  • Lonetto M, Gribskov M and Gross CA (1992) The sigma 70 family: Sequence conservation and evolutionary relationships. J Bacteriol 174: 3843–3849

    CAS  PubMed  Google Scholar 

  • Lonetto MA, Brown KL, Rudd KE and Buttner MJ (1994) Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA 91: 7573–7577

    CAS  PubMed  Google Scholar 

  • Lukens JH, Mathews DE and Durbin RD (1987) Effect of tagetitoxin on the levels of ribulose 1,5-bisphosphate carboxylase, ribosomes, and RNA in plastids of wheat leaves. Plant Physiol 84: 808–813

    CAS  Google Scholar 

  • Maliga P (1998) Two plastid polymerases of higher plants: An evolving story. Trends Plant Sci 3: 4–6

    Google Scholar 

  • Maliga P, Liere K, Sriraman P and Svab Z (1999) A transgenic approach to characterize the plastid transcription machinery in higher plants. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 317–323. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mathews DE and Durbin RD (1990) Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J Biol Chem 265: 493–498

    CAS  PubMed  Google Scholar 

  • Miyagi T, Kapoor S, Sugita M and Sugiura M (1998) Transcript analysis of the tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type II (NCII) promoter upstream of the atpI coding sequence. Mol Gen Genet 257: 299–307

    CAS  PubMed  Google Scholar 

  • Morden CW, Wolfe KH, dePamphilis CW and Palmer JD (1991) Plastid translation and transcription genes in a nonphotosynthetic plant: Intact, missing and pseudo genes. EMBO J 10: 3281–3288

    CAS  PubMed  Google Scholar 

  • Morikawa K, Ito FS, Tsunoyama Y, Nakahira Y, Shiina T and Toyoshima Y (1999) Circadian-regulated expression of a nuclear encoded plastid sigma factor gene (sigA) in wheat seedlings. FEBS Lett 451: 275–278

    Article  CAS  PubMed  Google Scholar 

  • Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103: 309–313

    Article  CAS  PubMed  Google Scholar 

  • Mullet JE, Orozco EM and Chua N-H (1985) Multiple transcripts for higher plant rbcL and atpB genes and localization of the transcription initiation sites of the rbcL gene. Plant Mol Biol 4: 39–54

    CAS  Google Scholar 

  • Mulligan RM, Leon P and Walbot V (1991) Transcription and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol 11: 533–543

    CAS  PubMed  Google Scholar 

  • Narita JO, Rushlow KE and Hallick RB (1985) Characterization of a Euglena gracilis chloroplast RNA polymerase specific for ribosomal RNA genes. J Biol Chem 260: 11194–11199

    CAS  PubMed  Google Scholar 

  • Neuhaus H and Link G (1990) The chloroplast psbK operon from mustard (Sinapis alba L.): Multiple transcripts during seedling development and evidence for divergent overlapping transcription. Curr Genet 18: 377–383

    Article  CAS  PubMed  Google Scholar 

  • Newton KJ, Winberg B, Yamato K, Lupold S and Stern DB (1995) Evidence for a novel mitochondrial promoter preceding the cox2 gene of perennial teosintes. EMBO J 14: 585–593

    CAS  PubMed  Google Scholar 

  • Nickelsen J and Link G (1990) Nucleotide sequence of the mustard chloroplast genes trnH and rps19. Nucleic Acids Res 18: 1051

    CAS  PubMed  Google Scholar 

  • Orozco EM, Jr., Mullet JE and Chua NH (1985) An in vitro system for accurate transcription initiation of chloroplast protein genes. Nucleic Acids Res 13: 1283–1302

    CAS  PubMed  Google Scholar 

  • Pfannschmidt T and Link G (1994) Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings. Plant Mol Biol 25: 69–81

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T and Link G (1997) The A and B forms of plastid DNA-dependent RNA polymerase from mustard (Sinapis alba L.) transcribe the same genes in a different developmental context. Mol Gen Genet 257: 35–44

    CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Nilsson A and Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

    CAS  Google Scholar 

  • Rajasekhar VK and Tewari KK (1995) Analyses of the extent of immunological relatedness between a highly purified pea chloroplast functional RNA polymerase and Escherichia coli RNA polymerase. J. Plant Physiol. 145: 427–463

    CAS  Google Scholar 

  • Rajasekhar VK, Sun E, Meeker R, Wu BW and Tewari KK (1991) Highly purified pea chloroplast RNA polymerase transcribes both rRNA and mRNA genes. Eur J Biochem 195: 215–228

    Article  CAS  PubMed  Google Scholar 

  • Rapp WD and Stern DB (1992) A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atpl gene. EMBO J 11: 1065–1073

    CAS  PubMed  Google Scholar 

  • Rapp JC, Baumgartner BJ and Mullet J (1992) Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267: 21404–21411

    CAS  PubMed  Google Scholar 

  • Rapp WD, Lupold DS, Mack S and Stern DB (1993) Architecture of the maize mitochondrial atp1 promoter as determined by linker-scanning and point mutagenesis. Mol Cell Biol 13: 7232–7238

    CAS  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C and Parthier B (1993) A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12: 1505–1512

    CAS  PubMed  Google Scholar 

  • Reiss T and Link G (1985) Characterization of transcriptionally active DNA-protein complexes from chloroplasts and etioplasts of mustard (Sinapis alba L.). Eur J Biochem 148: 207–212

    Article  CAS  PubMed  Google Scholar 

  • Reznikov W, Siegle DA, Cowing DW and Gross CA (1985) The regulation of transcription initiation in bacteria. Annu Rev Genet 19: 355–387

    Google Scholar 

  • Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29: 209–230

    Article  CAS  PubMed  Google Scholar 

  • Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K and Gourse RL (1993) A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262: 1407–1413

    CAS  PubMed  Google Scholar 

  • Satoh J, Baba K, Nakahira Y, Shiina T and Toyoshima Y (1997) Characterization of dynamics of the psbD light-induced transcription in mature wheat chloroplasts. Plant Mol Biol 33: 267–278

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Baba K, Nakahira Y, Tsunoyama Y, Shiina T and Toyoshima Y (1999) Developmental stage-specific multi-subunit plastid RNA polymerases (PEP) in wheat. Plant J 18: 407–416

    Article  CAS  PubMed  Google Scholar 

  • Schrubar H, Wanner G and Westhoff P (1990) Transcriptional control of plastid gene expression in greening sorghum seedlings. Planta 183: 101–111

    Google Scholar 

  • Serino G and Maliga P (1998) RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117: 1165–1170

    Article  CAS  Google Scholar 

  • Sexton TB, Christopher DA and Mullet JE (1990) Light-induced switch in barley psbD-psbC promoter utilization: A novel mechanism regulating chloroplast gene expression. EMBO J 9: 4485–4494

    CAS  PubMed  Google Scholar 

  • Shadel OS and Clayton DA (1993) Mitochondrial Transcription. J Biol Chem 268:16083–16086

    CAS  PubMed  Google Scholar 

  • Shiina T, Allison L and Maliga P (1998) rbcL transcript levels in tobacco plastids are in dependent of light: reduced dark transcription rate is compensated by increased mRNA stability. Plant Cell 10: 1713–1722

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K and Sugiura M (1982) The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene 20: 91–102

    Article  CAS  PubMed  Google Scholar 

  • Siemenroth A, Wollgiehn R, Neumann D and Börner T (1981) Synthesis of ribosomal RNA in ribosome-deficient plastids of the mutant ‘albostrians’ of Hordeum vulgare L. Planta 153: 547–555

    Article  CAS  Google Scholar 

  • Silhavy D and Maliga P (1998a) Mapping of the promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr Genet 33: 340–344

    Article  CAS  PubMed  Google Scholar 

  • Silhavy D and Maliga P (1998b) Plastid promoter utilization in a rice embryonic cell culture. Curr Genet 34: 67–70

    Article  CAS  PubMed  Google Scholar 

  • Sriraman P, Silhavy D and Maliga P (1998a) The phage-type PclpP-53 plastid promoter comprises sequences downstream of the transcription initiation site. Nucleic Acids Res 26: 4874–4879

    Article  CAS  PubMed  Google Scholar 

  • Sriraman P, Silhavy D and Maliga P (1998b) Transcription from heterologous rRNA operon promoters in chloroplasts reveals requirement for specific activating factors. Plant Physiol 117: 1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Steinberg TH, Mathews DE, Durbin RD and Burgess RR (1990) Tagetitoxin: A new inhibitor of transcription by RNA polymerase III. J Biol Chem 265: 499–505

    CAS  PubMed  Google Scholar 

  • Stern DB, Higgs DC and Yang JJ (1997) Transcription and translation in chloroplasts. Trends Plant Sci 2: 308–315

    Article  Google Scholar 

  • Strittmatter G, Godzicka-Josefiak A and Kössel H (1985) Identification of an rRNA operon promoter from Zea mays chloroplast which excludes the proximal tRNAVal from the primary transcript. EMBO J 4: 599–604

    CAS  PubMed  Google Scholar 

  • Suck R, Zeltz P, Falk J, Acker A, Kössel H and Krupinska K (1996) Transcriptionally active chromosomes (TACs) of barley chloroplasts contain the α-subunit of plastome encoded RNA polymerase. Curr Genet 30: 515–521

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M (1992) The Chloroplast Genome. Plant Mol Biol 19: 149–168

    Article  CAS  PubMed  Google Scholar 

  • Sun E, Wu BW and Tewari KK (1989) In vitro analysis of the pea chloroplast 16S rRNA gene promoter. Mol Cell Biol 9: 5650–5659

    CAS  PubMed  Google Scholar 

  • Surzycki SJ and Shellenbarger DL (1976) Purification and characterization of a putative sigma factor from Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 73: 3961–3965

    CAS  PubMed  Google Scholar 

  • Tanaka K, Oikawa K, Ohta N, Kuroiwa H, Kuroiwa T and Takahashi H (1996) Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science 272: 1932–1935

    CAS  PubMed  Google Scholar 

  • Tanaka K, Tozawa Y, Mochizuki N, Shinozaki K, Nagatani A, Wakasa K and Takahashi H (1997) Characterization of three cDNA species encoding plastid RNA polymerase sigma factors in Arabidopsis thaliana: evidence for the sigma factor heterogeneity in higher plant plastids. FEBS Lett 413: 309–313

    CAS  PubMed  Google Scholar 

  • Tewari KK and Goel A (1983) Solubilization and partial purification of RNA polymerase from pea chloroplasts. Biochemistry 22: 2142–2148

    Article  CAS  Google Scholar 

  • Tiller K and Link G (1993a) Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription systems from mustard (Sinapis alba L.). EMBO J 12: 1745–1753

    CAS  PubMed  Google Scholar 

  • Tiller K and Link G (1993b) Sigma-like transcription factors from mustard (Sinapis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. Plant Mol Biol 21: 503–513

    Article  CAS  PubMed  Google Scholar 

  • Tiller K, Eisermann A and Link G (1991) The chloroplast transcription apparatus from mustard (Sinapis alba L.). Evidence for three different transcription factors which resemble bacterial sigma factors. Eur J Biochem 198: 93–99

    Article  CAS  PubMed  Google Scholar 

  • To KY, Cheng MC, Suen DF, Mon DP, Chen LFO and Chen SCG (1996) Characterization of the light-responsive promoter of rice chloroplast psbD-C operon and the sequence-specific DNA binding factor. Plant & Cell Physiology 37: 660–666

    CAS  Google Scholar 

  • Tozawa Y, Tanaka K, Takahashi H and Wakasa K (1998) Nuclear encoding of a plastid sigma factor in rice and its tissue-and light-dependent expression. Nucleic Acids Res 26: 415–419

    Article  CAS  PubMed  Google Scholar 

  • Tracy RL and Stern DB (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 28: 205–216

    Article  CAS  PubMed  Google Scholar 

  • Trifa Y, Privat I, Gagnon J, Baeza L and Lerbs-Mache S (1998) The nuclear RPL4 gene encodes a chloroplast protein that co-purifies with the T7-like transcription complex as well as plastid ribosomes. J Biol Chem 273: 3980–3985

    Article  CAS  PubMed  Google Scholar 

  • Troxler RF, Zhang F, Hu J and Bogorad L (1994) Evidence that sigma factors are components of chloroplast RNA polymerase. Plant Physiol 104: 753–759

    Article  CAS  PubMed  Google Scholar 

  • Vera A and Sugiura M (1995) Chloroplast rRNA transcription from structurally different tandem promoters: an additional novel-type promoter. Curr Genet 27: 280–284

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Tunoyama Y, Shiina T and Toyoshima Y (1994) In vitro analysis of light-induced transcription in the wheat psbD/C gene cluster using plastid extracts from dark-frown and short-term-illuminated seedlings. Plant Physiol 104: 1259–1267

    CAS  PubMed  Google Scholar 

  • Weihe A and Börner T (1999) Transcription and the architecture of promoters in chloroplasts. Trends Plant Sci 4: 169–170

    Article  PubMed  Google Scholar 

  • Wolfe KH, Katz-Downie DS, Morden CW and Palmer JD (1992a) Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: Accelerated sequence evolution, altered promoter structure, and tRNA pseudogenes. Plant Mol Biol 18: 1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Ems SC and Palmer JD (1992b) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: Loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35: 304–317

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW and Palmer JD (1992c) Function and evolution of aminimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652

    CAS  PubMed  Google Scholar 

  • Wösten MM (1998) Eubacterial sigma-factors. FEMS Microbiol Rev 22: 127–150

    Article  PubMed  Google Scholar 

  • Wu CY, Lin CH and Chen LJ (1997) Identification of the transcription start site for the spinach chloroplast serine tRNA gene. FEBS Lett 418: 157–161

    Article  CAS  PubMed  Google Scholar 

  • Yan B and Pring DR (1997) Transcriptional initiation sites in sorghum mitochondrial DNA indicate conserved and variable features. Curr Genet 32: 287–295

    Article  CAS  PubMed  Google Scholar 

  • Zengel JM, Mueckl D and Lindahl L (1980) Protein L4 of the E. coli ribosome regulates an eleven gene r protein operon. Cell 21: 523–535

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Liere, K., Maliga, P. (2001). Plastid RNA Polymerases in Higher Plants. In: Aro, EM., Andersson, B. (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, vol 11. Springer, Dordrecht. https://doi.org/10.1007/0-306-48148-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48148-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6332-3

  • Online ISBN: 978-0-306-48148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics