Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 4))

Summary

Two main topics are addressed in this chapter:’ static heterogeneities’ of PS II, as they appear in standard dark-adapted material, and ‘dynamic heterogeneities’ possibly involved in the non-photochemical quenching processes that modulate the steady-state yield of PS II. Three types of static heterogeneities and possible correlations between them are discussed: (i) Granal and stromal PS II. A fraction, around 10–15%, of the PS II complex is found in stroma lamellae. (ii) PS II α and β. A fraction, around 35%, of PS II (β) appears to have a smaller antenna size and to be organized in isolated units, in contrast with the major part of PS II (α). (iii) A fraction, around 15%, of PS II centers are blocked on the acceptor side (non QE-transferring) and thus inactive with regard to oxygen evolution. A unifying model has been proposed by Melis (1985,1991), wherein stromal PS II, PS IIβ and inactive centers represent essentially the same sub-population of PS II, assumed to reflect a dynamic stock in the biosynthetic turnover of the PS II complex. The various correlations implied by this model are reexamined and evaluated in light of the currently available data, and alternative interpretations are discussed. It is argued that inactive centers belong to PS IIα and that, on the other hand, stromal PS II centers are active. The antenna size of stromal PS II is probably consistent with their belonging to PS IIβ but the amount of the latter exceeds significantly that of stromal PS II: it is suggested that a significant part of PS IIα may be located in the grana margins. The concept of non-photochemical quenching ‘qN’ covers three different contributions. ‘qT’, that appears at low irradiance levels, is interpreted as a ‘state 2 transition’, involving detachment of a fraction of LHCII from PS II α and thus probably increasing the β-fraction ‘qE’, controlled by the lumenal pH, is the major contribution to non-photochemical quenching at physiological irradiances. Most of the available evidence supports its interpretation as due to a dissipation pathway at the antenna level. The alternative mechanism of a formation of inactive centers of the quenching sink type does not account for the results obtained in vivo in normal materials, but seems to prevail in LHCII-deficient material. At over-saturating intensities, the ‘qI’ quenching reflects photoinhibition associated with inactivation of PS II centers in a quenching sink state. Significant formation of non QR-transferring centers does not take place as a result of photodegradation or of blocking the synthesis of the PS II complex. At physiological irradiances, there is no evidence that a sub-population of damaged PS II centers could be ascribed to insufficient synthetic turnover of the PS II complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsson PÅ, Andreasson E and Svensson P (1990) The domain organization of the plant thylakoid membrane. FEBS Lett 273: 36–40

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    PubMed  CAS  Google Scholar 

  • Anderson JM and Melis A (1983) Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci USA 80: 745–749

    CAS  PubMed  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593:427–440

    PubMed  CAS  Google Scholar 

  • Andreasson E, Svensson P, Weibull C and Albertsson PÅ (1988) Separation and characterization of stroma and grana membranes–evidence for heterogeneity in antenna size of both photosystem I and photosystem II. Biochim Biophys Acta 936: 339–350

    CAS  Google Scholar 

  • Arntzen CJ, Armond PA, Briantais JM, Burke JJ and Novitzky WP (1976) Dynamic interactions among structural components of the chloroplasts membrane, in chlorophyll proteins, reaction centers and photosynthetic membranes. Brookhaven Symposia in Biology 28: 316–337

    PubMed  Google Scholar 

  • Bassi R, Giacometti G and Simpson DJ (1988) Characterisation of stroma membranes from Zea Mays L. chloroplasts. Carlsberg Res Common 53: 221–232

    CAS  Google Scholar 

  • Bell DH and Hipkins MF (1985) Analysis of fluorescence induction curves from pea chloroplasts. Photosystem II reaction centre heterogeneity. Biochim Biophys Acta 807: 255–262

    CAS  Google Scholar 

  • Bennoun P and Li YS (1973) New results about the mode of action of DCMU in spinach chloroplasts. Biochim Biophys Acta 292: 162–168

    PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron transport properties. FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  • Bilger W and Björkman O (1990) Role of xanthophyll cycle in photoprotection elucidated by measurements of light induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25: 173–185

    CAS  Google Scholar 

  • Bilger W and Schreiber U (1986) Energy dependent quenching of dark level chlorophyll fluorescence in intact leaves. Photosynth Res 10: 303–308

    Article  CAS  Google Scholar 

  • Black MT, Brearley TH and Horton P (1986) Heterogeneity in chloroplast photosystem II. Photosynth Res 8: 193–207

    Article  CAS  Google Scholar 

  • Bradbury M and Baker NR (1984) A quantitative determination of photochemical and non-photochemical quenching during the slow phase of the chlorophyll fluorescence induction curve of bean leaves. Biochim Biophys Acta 765: 275–281

    CAS  Google Scholar 

  • Brearley T and Horton P (1984) Properties of photosystem IIα and photosystem IIβ in spinach chloroplasts. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol I, pp 433–436. Martinus Nijhoff/Dr W. Junk Publishers, The Hague

    Google Scholar 

  • Briantais JM (1994) Light-harvesting chlorophyll a–b complex requirement for regulation of photosystem II photochemistry by non-photochemical quenching. Photosynth Res 40: 287–294

    Article  CAS  Google Scholar 

  • Briantais JM, Vernotte C, Picaud M and Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    PubMed  CAS  Google Scholar 

  • Briantais JM, Comic G and Hodges M (1988) The modification of chlorophyll fluorescence of Chlamydomonas reinhardtii by photoinhibition and chloramphenicol addition suggests a form of photosystem II less susceptible to degradation. FEBS Lett 236: 226–230

    Article  CAS  Google Scholar 

  • Briantais JM, Ducruet JM, Hodges M and Krause H (1992) The effects of low temperature acclimation and photoinhibitory treatments on photosystem 2 studied by thermoluminescence and fluorescence decay kinetics. Photosynth Res 31: 1–10

    Article  CAS  Google Scholar 

  • Butler WL, Visser JWM and Simons HL (1973) The kinetics of light-induced changes of C550, cytochrome b559 and fluorescence yield in chloroplasts at low temperature. Biochim Biophys Acta 292: 140–151

    PubMed  CAS  Google Scholar 

  • Callahan FE, Becker DW and Cheniae GM (1986) Studies on the photoactivation of the water oxidizing enzyme II. Characterization of weak light photoinhibition of PS II and its light-induced recovery. Plant Physiol 82: 261–269

    CAS  PubMed  Google Scholar 

  • Callahan FE, Wergin WP, Nelson N, Edelman M and Mattoo AK (1989) Distribution of thylakoid proteins between stromal and granal lamellae in Spirodela. Plant Physiol 91: 629–635

    CAS  PubMed  Google Scholar 

  • Cao J and Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive Photosystem II in thylakoid membranes. Biochim Biophys Acta 1015: 180–188

    PubMed  CAS  Google Scholar 

  • Chow WS, Hope AB and Anderson JM (1990) A reassessment of the use of herbicide binding to measure photosystem II reaction centres in plant thylakoids. Photosynth Res 24: 109–113

    Article  CAS  Google Scholar 

  • Chow WS, Hope AB and Anderson JM (1991) Further studies on quantifying photosystem II in vivo by flash-induced oxygen yield from leaf discs. Aust J Plant Physiol 18: 397–410

    CAS  Google Scholar 

  • Chylla RA and Whitmarsh J (1990) Light saturation response of inactive photosystem II reaction centers in spinach. Photosynth Res 25: 39–8

    Article  CAS  Google Scholar 

  • Chylla RA, Garab G and Whitmarsh J (1987) Evidence for slow turnover in a fraction of Photosystem II complexes in thylakoid membranes. Biochim Biophys Acta 894: 562–571

    CAS  Google Scholar 

  • Cleland RE (1988) Molecular events of photoinhibitory inactivation in the reaction center of photosystem II. Aust J Plant Physiol 15: 135–150

    CAS  Google Scholar 

  • Cleland RE, Melis A and Neale PJ (1986) Mechanism of photoinhibition: Photochemical reaction center inactivation in system II of chloroplasts. Photosynth Res 9: 79–88

    Article  CAS  Google Scholar 

  • Critchley C (1988) The molecular mechanism of photoinhibition-facts and fiction. Aust J Plant Physiol 15: 27–41

    Article  CAS  Google Scholar 

  • Crofts J and Horton P (1991) Dissipation of excitation energy by photosystem II particles at low pH. Biochim Biophys Acta 1058: 187–193

    CAS  Google Scholar 

  • Dainese P, Marquardt J, Pineau B and Bassi R (1992a) Identification of violaxanthin and zeaxanthin binding proteins in maize photosystem II. In: Murata (ed) Research in Photosynthesis, Vol I, pp 287–290, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dainese P, Santini C, Ghiretti-Magaldi A, Marquardt J, Tidu V, Mauro S, Bergantino E and Bassi R (1992b) The organization of pigment-proteins within photosystem II. In Murata N (ed) Research in Photosynthesis, Vol II, pp 13–20. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dan H and Hansen UP (1990) A study of the energy-dependent quenching of chlorophyll fluorescence by means of photoacoustic measurements. Photosynth Res 25: 269–278

    Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60: 1–23

    CAS  Google Scholar 

  • Dekker JP, van Gorkom HJ, Wensink J and Ouwehand L (1984) Absorbance difference spectra of the successive redox states of the oxygen-evolving apparatus of photosynthesis. Biochim Biophys Acta 767: 1–9

    CAS  Google Scholar 

  • Delosme R (1967) Etude de lľinduction de fluorescence des algues vertes et des chloroplastes au début dďune illumination intense. Biochim Biophys Acta 143: 108–128

    PubMed  CAS  Google Scholar 

  • Delrieu MJ and Rosengard F (1993) Events near the reaction center in O2 evolving PS II enriched thylakoid membranes: The presence of an electric field during the S2 state in a population of centers. Photosynth Res 37: 205–215

    Article  CAS  Google Scholar 

  • Demeter S, Rozza ZS, Vass I and Sallai A (1985) Thermo-luminescence study of charge recombination in photosystem II at low temperature. I Characterization of the Zv and A thermoluminescence bands. Biochim Biophys Acta 809: 369–378

    CAS  Google Scholar 

  • Demmig B and Björkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. Planta 171: 171–184

    Article  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    CAS  Google Scholar 

  • Demmig-Adams B and Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Article  CAS  Google Scholar 

  • Dennenberg RJ, Jursinic PA and McCarthy S (1986) Intactness of the oxygen-evolving system in thylakoids and photosystem II particles. Biochim Biophys Acta 852: 222–233

    CAS  Google Scholar 

  • Diner BA (1977) Dependence of the deactivation reactions of photosystem II on the redox state of plastoquinone pool A varied under anaerobic conditions. Equilibria on the acceptor side of photosystem II. Biochim Biophys Acta 460: 247–258

    PubMed  CAS  Google Scholar 

  • Diner BA (1986) The reaction center of photosystem II. In Staehelin LA and Arntzen CJ (eds) Photosynthesis III, Encyclopedia of Plant Physiology, Vol 19, pp 422–436. Springer Verlag, Berlin

    Google Scholar 

  • Diner BA, Petrouleas V and Wendoloski JJ (1991) The ironquinone electron-acceptor complex of Photosystem II. Physiol Plant 81: 423–436

    Article  CAS  Google Scholar 

  • Doschek WW and Kok B (1972) Photon trapping in photosystem II of photosynthesis. Biophys J 12: 832–838

    Article  PubMed  CAS  Google Scholar 

  • Edwards GE and Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102

    Article  CAS  Google Scholar 

  • Falkowski PG, Wyman K, Ley AC and Mauzerall DC (1986) Relationship of steady-state photosynthesis to fluorescence in eucaryotic algae. Biochim Biophys Acta 849: 183–192

    CAS  Google Scholar 

  • Forbush B and Kok B (1968) Reaction between primary and secondary electron acceptors of photosystem II of photo-synthesis. Biochim Biophys Acta 162: 243–253

    PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM and Baker NR (1989) The relationship between quantum yield of photosynthetic electron transfer and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92

    CAS  Google Scholar 

  • Genty B, Harbinson J, Briantais JM and Baker NR (1990a) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25: 249–257

    Article  CAS  Google Scholar 

  • Genty B, Harbinson J, Briantais JM and Baker NR (1990b) The relationship between the relative quantum efficiencies of photosystems in leaves. Efficiency of PS2 in relation to nonphotochemical quenching. In: Baltcheffsky M (ed) Current Research in Photosynthesis, Vol IV, pp 365–368. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Genty B, Wonders J and Baker NR (1990c) Non-photochemical quenching of Fo in leaves is emission wavelength dependent: Consequences for quenching analysis and its interpretation. Photosynth Res 26: 133–139

    Article  CAS  Google Scholar 

  • Genty B, Goulas Y, Dimon B, Peltier G, Briantais JM and Moya I (1992) Modulation of efficiency of primary conversion in leaves, mechanisms involved at PS2. In: Murata N (ed) Research in Photosynthesis, Vol IV, pp 603–610, Kluwer Acad Publishers, Dordrecht

    Google Scholar 

  • Giardi MT, Rigoni F, Barbato R and Giacometti GM (1991) Relationship between heterogeneity of PS II in grana particles in vitro and phosphorylation. Biochem Biophys Res Comm 176: 1298–1305

    Article  PubMed  CAS  Google Scholar 

  • Gilmore A and Yamamoto HY (1991) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplast under artificially mediated linear and cyclic electron transport. Plant Physiol 96: 635–643

    CAS  PubMed  Google Scholar 

  • Gilmore AM and Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35: 67–78

    Article  CAS  Google Scholar 

  • Govindjee (1990) Photosystem II heterogeneity: The acceptor side. Photosynth Res 25: 151–160

    Article  CAS  Google Scholar 

  • Graan T and Ort DR (1986) Detection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction. Biochim Biophys Acta 852: 320–330

    CAS  Google Scholar 

  • Greer DH and Laing WA (1988) Photoinhibition of photosynthesis in intact kiwifruit (Actinida deliciosa) leaves: Effect of light during growth on photoinhibition and recovery. Planta 175: 355–363

    Article  CAS  Google Scholar 

  • Henrysson T and Sundby C (1990) Characterization of photosystem II in stroma thylakoid membranes. Photosynth Res 25: 107–117

    Article  CAS  Google Scholar 

  • Hodges M and Barber J (1983) Analysis of chlorophyll fluorescence induction kinetics exhibited by DCMU-inhibited thylakoids and the origin of α and β centers. Biochim Biophys Acta 848: 239–248

    Google Scholar 

  • Hodges M and Barber J (1986) Analysis of chlorophyll fluorescence induction kinetics exhibited by DCMU-inhibited thylakoids and the origin of α and β centres. Biochim Biophys Acta 848: 239–246

    CAS  Google Scholar 

  • Hodges M, Boussac A and Briantais JM (1987) Thylakoid membrane protein phosphorylation modifies equilibrium between photosystem II quinone electron acceptors. Biochim Biophys Acta 894: 138–145

    CAS  Google Scholar 

  • Hodges M, Cornic G and Briantais JM (1989) Chlorophyll fluorescence from spinach leaves. Resolution of nonphotochemical quenching. Biochim Biophys Acta 974: 289–293

    CAS  Google Scholar 

  • Holzwarth AR (1991) Excited-state kinetics in chlorophyll systems and its relationship to the functional organization of the photosystems. In H Scheer (ed) Chlorophylls, pp 1125–1151, CRC Press, Boca Raton

    Google Scholar 

  • Hormann H, Neubauer C and Schreiber U (1994) On the relationship between chlorophyll fluorescence quenching and the quantum yield of electron transport in isolated thylakoids. Photosynth Res 40: 93–106

    Article  CAS  Google Scholar 

  • Horton P (1981) The effect of redox potential on the kinetics of fluorescence induction in pea chloroplasts. I. Removal of the slow phase. Biochim Biophys Acta 635: 105–110

    PubMed  CAS  Google Scholar 

  • Horton P and Bowyer JR (1990) Chlorophyll fluorescence transients. In: Harwood JL and Bowyer JR (eds) Methods in Plant Biochemistry, Vol 4, pp 259–296. Acad Press, New York

    Google Scholar 

  • Horton P and Hague A (1988) Studies on the induction of chlorophyll fluorescence in barley protoplasts. IV Resolution of non-photochemical quenching. Biochim Biophys Acta 932: 107–115

    CAS  Google Scholar 

  • Horton P and Lee P (1984) Phosphorylation of chloroplast thylakoids decreases the maximum capacity of photosystem II electron transfer. Biochim Biophys Acta 767: 563–567

    CAS  Google Scholar 

  • Horton P and Lee P (1985) Phosphorylation of chloroplast membrane proteins partially protects against photoinhibition. Planta 165: 37–42

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor GD and Young AJ (1992) Control of the light-harvesting function of chloroplast membrane by aggregation of the LHCII chlorophyll protein complex. FEBS Let 292: 1–4

    Google Scholar 

  • Horvath G, Droppa M and Melis A (1984) Herbicide action on photosystem II in spinach chloroplasts: Concentration effect on PS II α and PS II β Photobiochem Photobiophys 7: 249–256

    CAS  Google Scholar 

  • Hsu BD (1992) The active photosystem II centers can make a significant contribution to the initial fluorescence rise from Fn to F1 Plant Science 81: 169–174

    Article  CAS  Google Scholar 

  • Hsu BD (1993) Evidence for the contribution of the S-state transitions of oxygen evolution to the initial phase of fluorescence induction, Photosynth Res 36: 81–88

    Article  CAS  Google Scholar 

  • Hsu BD and Lee JY (1991a) A study on the fluorescence induction curve of the DCMU-poisoned chloroplast. Biochim Biophys Acta 1056: 285–292

    CAS  Google Scholar 

  • Hsu BD and Lee JY (1991b) Characterization of the photosystem II centers inactive in plastoquinone reduction by fluorescence induction. Photosynth Res 27: 143–150

    Article  CAS  Google Scholar 

  • Hsu BD, Lee YS and Jang YR (1989) A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts. Biochim Biophys Acta 975: 44–49

    CAS  Google Scholar 

  • Jegerschold C, Virgin I and Styring S (1990) Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry 29: 6179–6186

    PubMed  CAS  Google Scholar 

  • Joliot A (1974) Effect of low temperature (_30 to _60°C) on the reoxidation of the photosystem II primary acceptor in the presence and absence of DCMU. Biochim Biophys Acta 357: 439–448

    PubMed  CAS  Google Scholar 

  • Joliot A and Joliot P (1964) Etude cinétique de la réaction photochimique libérant lľoxygène au cours de la photosynthèse. CR Acad Sci Paris 258: 4622–4625

    CAS  Google Scholar 

  • Joliot P (1965) Etudes simultanées des cinétiques de fluorescence et dďémission dďoxygène photosynthétique. Biochim Biophys Acta 102: 135–148

    PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (1977) Evidence for a double hit process in photosystem II based on fluorescence studies. Biochim Biophys Acta 462: 559–574

    PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (1979) Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. Biochim. Biophys. Acta 546: 93–105

    PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (1981a) Characterization of photosystem II centers by polarographic, spectroscopic and fluorescence methods. In Akoyunoglou G (ed) Photosynthesis III. Structure and Molecular Organization of the Photosynthetic Apparatus, pp 885–899. Balaban International Science Services, Philadelphia PA

    Google Scholar 

  • Joliot P and Joliot A (1981b) Double photoreactions induced by a laser flash as measured by oxygen emission. Biochim Biophys Acta 638: 132–140

    CAS  Google Scholar 

  • Joliot P, Joliot A, Bouges B and Barbieri B (1971) Studies of system II photocenters by comparative measurements of luminescence, fluorescence, and oxygen emission. Photochem Photobiol 14: 287–305

    CAS  Google Scholar 

  • Joliot P, Bennoun P and Joliot A (1973) New evidence supporting energy transfer between photosynthetic units. Biochim Biophys Acta 305: 317–328

    PubMed  CAS  Google Scholar 

  • Jursinic PA and Dennenberg RJ (1988) Enhanced oxygen yields caused by double turnovers of photosystem II induced by dichlorobenzoquinone. Biochim Biophys Acta 934: 177–185

    CAS  Google Scholar 

  • Jursinic PA and Dennenberg RJ (1989) Measurement of stoichiometry of photosystem II to photosystem I reaction centers. Photosynth Res 21: 197–200

    CAS  Google Scholar 

  • Keren N, Gong H and Ohad I (1995) Oscillation of reaction center II D1 protein degradation in vivo induced by repetitive light flashes: Correlation between the level of RC II Q B and protein degradation in low light. J Biol Chem 270: 806–814

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky DL, Vernotte C and Etienne AL (1990) Protection from photoinhibition by low temperature in Synechocystis 6714 and in Chlamydomonas reinhardtii: Detection of an intermediary state. Biochemistry 29: 8100–8106

    Article  PubMed  CAS  Google Scholar 

  • Krause GH and Behrend U (1986) △pH-dependent chlorophyll fluorescence quenching indicates a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett 200: 298–302

    Article  CAS  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Krieger A and Weis E (1990) pH-dependent quenching of chlorophyll fluorescence in isolated PS II particles: Dependence on the redox potential. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol VI, pp 563–566. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Krieger A and Weis E (1993) The role of calcium in the pH dependent control of photosystem II. Photosynth Res 37: 117–130

    Article  CAS  Google Scholar 

  • Krieger A, Moya I and Weis E (1992) Energy-dependent quenching of chlorophyll a fluorescence: Effect of pH on stationary fluorescence and picosecond relaxation kinetics in thylakoid membranes and photosystem II preparations. Biochim Biophys Acta 1102: 167–176

    CAS  Google Scholar 

  • Kyle DJ (1987) The biochemical basis for photoinhibition of photosystem II. In: Kyle DJ, Osmond CB and Artnzen CJ (eds), Photoinhibition, pp 197–226. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Lam E, Baltimore B, Ortiz W, Chollar S, Melis A and Malkin R (1983) Characterization of a resolved oxygen-evolving photosystem II preparation from spinach thylakoids. Biochim Biophys Acta 724: 201–211

    CAS  Google Scholar 

  • Lavergne J (1982a) Two types of primary acceptors in chloroplasts photosystem II. I. Different recombination properties. Photobiochem Photobiophys 3: 257–271

    CAS  Google Scholar 

  • Lavergne J (1982b) Two types of primary acceptors in chloroplasts photosystem II. II. Reduction in two successive photoacts. Photobiochem Photobiophys 3: 273–285

    CAS  Google Scholar 

  • Lavergne (1982c) Mode of action of diehlorophenyldimethylurea. Evidence that the inhibitor competes with plastoquinone for binding to a common site on the acceptor side of photosystem II. Biochim Biophys Acta 682: 345–353

    CAS  Google Scholar 

  • Lavergne J (1987) Optical difference spectra of the S-state transitions in the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 894: 91–107

    CAS  Google Scholar 

  • Lavergne J (1991) Improved UV-visible spectra of the Stransitions in the photosynthetic oxygen-evolving system. Biochim Biophys Acta 1060: 175–188

    CAS  Google Scholar 

  • Lavergne J and Leci E (1993) Properties of inactive photosystem II centers. Photosynth Res 35: 323–343

    Article  CAS  Google Scholar 

  • Lavergne J and Trissl HW (1995) Theory of fluorescence induction in Photosystem II: Derivation of analytical expressions in a model including exciton radical pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68: 2474–2492

    PubMed  CAS  Google Scholar 

  • Lavorel J and Etienne AL (1977) In vivo chlorophyll fluorescence. In Barber J (ed) Primary Processes of Photosynthesis, pp 203–268, Elsevier, Amsterdam

    Google Scholar 

  • Le Gouallec JL, Cornic G and Briantais JM (1991) Chlorophyll fluorescence and photoinhibition in a tropical rainforest understory plant. Photosynth Res 27: 135–142

    Article  Google Scholar 

  • Lokstein H, Härtel H, Hoffmann P and Renger G (1993) Comparison of chlorophyll fluorescence quenching in leaves of wild type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.) J Photochem Photobiol B: Biol 19: 217–225

    CAS  Google Scholar 

  • Mäenpää P, Andersson B and Sundby C (1987) Difference in sensitivity to photoinhibition between photosystem II in the appressed and non-appressed thylakoid regions. FEES Lett 215: 31–36

    Google Scholar 

  • Malkin S and Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I Number ofcomponents involved in the reaction and quantum yields. Biochim Biophys Acta 126: 413–432

    PubMed  CAS  Google Scholar 

  • Mattoo AK, Hoffman-Falk H, Marder JB and Edelman M (1984) Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32 kilodalton protein of chloroplast membrane. Proc Natl Acad Sci USA 81: 1380–1384

    CAS  PubMed  Google Scholar 

  • Mattoo AK, Marder JB and Edelman M (1989) Dynamics of the photosystem II reaction center. Cell 56: 241–246

    Article  PubMed  CAS  Google Scholar 

  • McCarthy S, Jursinic P and Stemler A (1988) Atrazine binding sites of photosystem II. Plant Physiol 86S: 46

    Google Scholar 

  • Melis A (1985) Functional properties of photosystem IIβ in spinach chloroplasts. Biochim Biophys Acta 808: 334–342

    CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87–106

    CAS  Google Scholar 

  • Melis A and Anderson JM (1983) Structural and functional organization of the photosystem in spinach chloroplasts. Antenna size, relative electron-transport capacity, and chlorophyll composition. Biochim Biophys Acta 724: 473–484

    CAS  Google Scholar 

  • Melis A and Duysens LNM (1979) Biphasic energy conversion kinetics and absorbance difference spectra of photosystem II of chloroplasts. Evidence for two different PS II reaction centers. Photochem Photobiol 29: 373–382

    CAS  Google Scholar 

  • Melis A and Homann PH (1975) Kinetic analysis of the fluorescence induction in 3-(3,4-dichlorophenyl)-l, l-dimethylurea poisoned chloroplasts. Photochem Photobiol 21: 431–437

    CAS  Google Scholar 

  • Melis A and Homann PH (1976) Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 23: 343–350

    PubMed  CAS  Google Scholar 

  • Melis A and Ow RA (1982) Photoconversion kinetics of chloroplast photosystems I and II. Effect of Ng2+, Biochim Biophys Acta 682: 1–10

    CAS  Google Scholar 

  • Melis A and Schreiber U (1979) The kinetic relationship between the C-550 absorbance change, the reduction of Q (ΔA2+ and the variable fluorescence yield change in chloroplasts at room temperature. Biochim Biophys Acta 547: 47–57

    PubMed  CAS  Google Scholar 

  • Melis A and Thielen APMG (1980) The relative absorption cross-sections of photosystem I and photosystem II in chloroplasts from three types of Nicotiana tabacum. Biochim Biophys Acta 589: 275–286

    PubMed  CAS  Google Scholar 

  • Michel H, Hunt DF, Shabanowitz J and Bennett J (1988) Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their NH2 termini. J Biol Chem 263: 1123–1130

    PubMed  CAS  Google Scholar 

  • Murata N, Nishimura M and Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic systems. II Induction of fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta 120: 20–33

    Google Scholar 

  • Nedbal L, Gibas C and Whitmarsh J (1991) Light saturation curves show competence of the water splitting complex in inactive photosystem II reaction centers. Photosynth Res 30: 85–94

    Article  CAS  Google Scholar 

  • Noctor G, Rees D, Young A and Horton P (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence and the transthylakoid pH-gradient in isolated chloroplasts. Biochim Biophys Acta 1057: 320–330

    CAS  Google Scholar 

  • ögren E (1991) Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components. Planta 184: 538–544

    Google Scholar 

  • Ohad I, Koike H, Shochat S and Inoue Y (1988) Changes in the properties of reaction centers during the initial stages of photoinhibition as revealed by thermoluminescence measurements. Biochim Biophys Acta 993: 288–298

    Google Scholar 

  • Ohad I, Keren N, Zer H, Gong H, Mor TS, Gal A, Tal S and Domovich Y (1994) Light-induced degradation of the photosystem II reaction centre D1 protein in vivo: An integrative approach. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis, From Molecular Mechanisms to the Field, pp 161–178. Environmental Plant Biology series, Davies (ed), Bios Scientific Publishers, Oxford

    Google Scholar 

  • Olive J, Vallon O, Wollman F-A, Recouvreur M and Bennoun P (1986) Studies b 6/f complex. II. Localization of the complex in the thylakoid membranes from spinach and Chlamydomonas reinhardtii by immunocytochemistry and freeze-fracture analysis of b 6-f mutants. Biochim Biophys Acta 851: 239–248

    CAS  Google Scholar 

  • Oxborough K and Horton P (1987) Characterization of the effects of antimycin A upon the high energy state quenching of chlorophyll fluorescence (qE) in spinach and pea chloroplasts. Photosynth Res 12: 119–128

    Article  CAS  Google Scholar 

  • Percival MP, Webber AN and Baker NR (1984) Evidence for the role of the light-harvesting chlorophyll a/b protein complex in photosystem II heterogeneity. Biochim Biophys Acta 767: 582–589

    CAS  Google Scholar 

  • Peter GF and Thornber JP (1991a) Biochemical evidence that the higher plant photosystem II core complex is organized as a dimer. Plant Cell Physiol 32: 1237–1250

    CAS  Google Scholar 

  • Peter GF and Thornber JP (1991b) Biochemical composition and organization of higher plant photosystem II light harvesting pigment proteins. J Biol Chem 266: 16745–16754

    PubMed  CAS  Google Scholar 

  • Ramm D and Hansen UP (1993) Can charge recombination as caused by pH dependent donor side limitation in PS2 account for high-energy state quenching? Photosynth Res 35: 97–100

    Article  CAS  Google Scholar 

  • Rees D, Noctor GD and Horton P (1990) The effect of highenergy-state excitation quenching on maximum and dark level chlorophyll fluorescence yield. Photosynth Res 25: 199–211

    Article  CAS  Google Scholar 

  • Rees D, Noctor GD, Ruban AV, Crofts J, Young AJ and Horton P (1992) pH dependent chlorophyll fluorescence quenching in spinach thylakoids from light treated or dark adapted leaves. Photosynth Res 31: 11–19

    Article  CAS  Google Scholar 

  • Robinson HH and Crofts AR (1983) Kinetics of the oxidationreduction reactions of the photosystem II quinone acceptor complex, and the pathway for deactivation. FEBS Lett 151: 221–226

    Google Scholar 

  • Robinson HH and Crofts AR (1984) Kinetics of proton uptake and the oxidation-reduction reactions of quinone acceptor complex of PS II from pea chloroplasts. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol 1, pp 477–480. Martinus Nijhoff/Dr W Junk Publishers, The Hague

    Google Scholar 

  • Roelofs TA, Lee CH and Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary process in photosystem II α-and β-units. Biophys J 61: 1147–1163

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV and Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I–Spectroscopic analysis of isolated light-harvesting complexes. Biochim Biophys Acta 1102: 30–38

    CAS  Google Scholar 

  • Ruban AV and Horton P (1995) An investigation of the sustained component of nonphotochemical quenching of chlorophyll fluorescence in isolated chloroplasts and leaves of spinach. Plant Physiol 108: 721–726

    PubMed  CAS  Google Scholar 

  • Ruban AV, Young AJ and Horton P (1993) Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Plant Physiol 102: 741–750

    PubMed  CAS  Google Scholar 

  • Schreiber U and Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42C: 1255–1264

    Google Scholar 

  • Schreiber U and Neubauer C (1990) O-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25: 279–293

    Article  CAS  Google Scholar 

  • Schreiber U and Pfister K (1982) Kinetic analysis of the light-induced chlorophyll fluorescence rise curve in the presence of. dichlorophenyldimethylurea. Dependence of the slow-rise component on the degree of chloroplast intactness. Biochim Biophys Acta 680: 60–68

    CAS  Google Scholar 

  • Schreiber U, Schliwa U and Bilger W (1986) Continuous recording of photochemical and non photochemical chlorophyll fluorescence quenching with a new type of modulation fluorimeter. Photosynth Res 10: 51–62

    Article  CAS  Google Scholar 

  • Sinclair J and Spence SM (1990) Heterogeneous photosystem 2 activity in isolated spinach chloroplasts. Photosynth Res 24: 209–220

    Article  CAS  Google Scholar 

  • Somersalo S and Krause GH (1989) Photoinhibition at chilling temperature, fluorescence characteristics of unharded and cold acclimated spinach leaves. Planta 177: 409–416

    Article  CAS  Google Scholar 

  • Styring S, Virgin I, Ehrenberg A and Andersson B (1990) Strong light photoinhibition of electron transport in photosystem II. Impairment of the function of the first quinone acceptor, QA Biochim Biophys Acta 1015: 269–278

    CAS  Google Scholar 

  • Thayer SS and Björkman O (1992) Carotenoid distribution and deepoxidation in thylakoids pigment-protein complexes from cotton leaves and bundle sheath cells of maize. Photosynth Res 33: 213–226

    Article  CAS  Google Scholar 

  • Theg SM, Filar LJ and Dilley RA (1986) Photoinactivation of chloroplasts already inhibited on the oxidizing side of photosystem II. Biochim Biophys Acta 849: 104–111

    CAS  Google Scholar 

  • Thielen AMPG and van Gorkom HJ (1981a) Energy transfer and quantum yield in photosystem II. Biochim Biophys Acta 637: 439–446

    CAS  Google Scholar 

  • Thielen AMPG and van Gorkom HJ (1981b) Redox potentials of electron acceptors in photosystems II α and II β, FEES Lett 129: 205–209

    Article  CAS  Google Scholar 

  • Thielen AMPG, van Gorkom HJ and Rijgersberg CP (1981) Chlorophyll composition of photosystems IIα, IIβ and I in tobacco chloroplasts. Biochim Biophys Acta 635: 121–123

    PubMed  CAS  Google Scholar 

  • Vallon O, Wollman FA and Olive J (1985) Distribution of intrinsic and extrinsic subunits of the PS II protein complex between appressed and non-appressed regions of the thylakoid membrane: An immunocytochemical study. FEBS Lett 183: 245–250

    Article  CAS  Google Scholar 

  • Vallon O, Hoyer-Hansen G and Simpson DJ (1987) Photosystem II and cytochrome b-559 in the stroma lamellae of barley chloroplasts. Carlsberg Res Com 52: 405–421

    CAS  Google Scholar 

  • Vallon O, Bulté L, Dainese P, Olive J, Bassi R and Wollman F-A (1991) Lateral redistribution of cytochrome b 6-f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci 88: 8262–8266

    PubMed  CAS  Google Scholar 

  • Van Wijk KJ and Van Hasselt PR (1990) The quantum efficiency of photosystem II and its relation to non-photochemical quenching of chlorophyll fluorescence: The effect of measuring and growth temperature. Photosynth Res 25: 233–240

    Article  Google Scholar 

  • Van Wijk KJ and Van Hasselt PR (1993) Photoinhibition of photosystem II in vivo is preceded by down-regulation through light-induced acidification of the lumen: Consequence for the mechanism of photoinhibition in vivo. Planta 189: 359–368

    Google Scholar 

  • Vass I, Gatzen G and Holzwarth AR (1993) Picosecond timeresolved fluorescence studies on photoinhibition and double reduction of QA in photosystem II. Biochim Biophys Acta 1183: 388–396

    CAS  Google Scholar 

  • Vernotte C, Etienne AL and Briantais JM (1979) Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta 545: 519–527

    PubMed  CAS  Google Scholar 

  • Walter RG and Horton P (1991) Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth Res 27: 121–133

    Google Scholar 

  • Walter RG and Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves. Photosynth Res 36: 119–139

    Google Scholar 

  • Weis E and Berry J (1987) Quantum efficiency of PS II in relation to energy dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 283: 259–267

    Google Scholar 

  • Weis E and Lechtenberg D (1989) Fluorescence analysis during steady state photosynthesis. Philos Trans R Soc London Biol Sci 233: 253–268

    Google Scholar 

  • Wettern M (1986) Localization of the 32,000 Dalton chloroplast protein pools in thylakoids: Significance in atrazine binding. Plant Science 43: 173–177

    Article  CAS  Google Scholar 

  • Wollenberger L, Stefansson H, Yu SG and Albertsson Pè (1994) Isolation and characterization of vesicles originating from the chloroplast grana margins. Biochim Biophys Acta 1184: 93–102

    CAS  Google Scholar 

  • Wollman FA (1978) Determination and modification of th redox state of the secondary acceptor of photosystem II in the dark. Biochim Biophys Acta 503: 263–273

    PubMed  CAS  Google Scholar 

  • Yu SG, Bjorn G and Albertsson Pè (1993) Characterization of a non-detergent PS II-cytochrome b/f preparation (BS) Photosynth Res 37: 227–236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lavergne, J., Briantais, JM. (1996). Photosystem II Heterogeneity. In: Ort, D.R., Yocum, C.F., Heichel, I.F. (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-48127-8_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-48127-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3683-9

  • Online ISBN: 978-0-306-48127-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics