Skip to main content
Log in

Nonhomogeneous Dual Wavelet Frames with the \({p}\)-Refinable Structure in \({L}^{\mathbf{2}}{({\mathbb{R}}^{+})}\)

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

In recent years, nonhomogeneous wavelet frames have been widely studied by many researchers, while the ones in \(L^{2}(\mathbb{R}^{+})\) have not. Some practical applications indicate that it is desirable to have a nonhomogeneous dual wavelet frame in \(L^{2}(\mathbb{R}^{+})\), because the time variable can not take negative values in signal sampling. In addition, similar to the homogeneous dual wavelet frames, the nonhomogeneous ones derived from refinable functions have fast wavelet algorithms. In view of this, under the setting of \(L^{2}(\mathbb{R}^{+})\), we study the properties of nonhomogeneous dual wavelet frames and obtain a construction of nonhomogeneous dual wavelet frames from a pair of \(p\)-refinable functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Atreas, A. Melas, and T. Stavropoulos, ‘‘Affine dual frames and extension principles,’’ Appl. Comput. Harmonic Anal. 36, 51–62 (2014). https://doi.org/10.1016/j.acha.2013.02.003

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Cai, B. Dong, and Z. Shen, ‘‘Image restoration: A wavelet frame based model for piecewise smooth functions and beyond,’’ Appl. Comput. Harmonic Anal. 41, 94–138 (2015). https://doi.org/10.1016/j.acha.2015.06.009

    Article  MathSciNet  MATH  Google Scholar 

  3. C. K. Chui, X. Shi, and J. Stöckler, ‘‘Affine frames, quasi-affine frames, and their duals,’’ Adv. Comput. Math. 8, 1–17 (1998). https://doi.org/10.1023/A:1018975725857

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Christensen, H. O. Kim, and R. Y. Kim, ‘‘On Parseval wavelet frames with two or three generators via the unitary extension principle,’’ Canad. Math. Bull. 57, 254–263 (2014). https://doi.org/10.4153/CMB-2013-015-9

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Daubechies, B. Han, A. Ron, and Z. Shen, ‘‘Framelets, MRA-based constructions of wavelet frames,’’ Appl. Comput. Harmonic Anal. 14, 1–46 (2003). https://doi.org/10.1016/S1063-5203(02)00511-0

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Daubechies and B. Han, ‘‘Pairs of dual wavelet frames from any two refinable functions,’’ Constr. Approx. 20, 325–352 (2004). https://doi.org/10.1007/s00365-004-0567-4

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Daubechies, A. Grossmann, and Y. Meyer, ‘‘Painless nonorthogonal expansions,’’ J. Math. Phys. 27, 1271–1283 (1986). https://doi.org/10.1063/1.527388

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conferences Series in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, 1992).

  9. L. Debnath and F. A. Shah, Wavelet Transforms and Their Applications, 2nd ed., (Springer, New York, 2015).

    MATH  Google Scholar 

  10. R. J. Duffin and A. C. Shaeffer, ‘‘A class of nonharmonic Fourier series,’’ Trans. Am. Math. Soc. 72, 341–366 (1952). https://doi.org/10.1090/S0002-9947-1952-0047179-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu. A. Farkov, ‘‘Wavelets and frames based on Walsh-Dirichlet type kernels,’’ Commun. Math. Appl. 1, 27–46 (2010).

    MathSciNet  MATH  Google Scholar 

  12. Yu. A. Farkov, ‘‘Examples of frames on the Cantor dyadic group,’’ J. Math. Sci. 187, 22–34 (2012). https://doi.org/10.1007/s10958-012-1046-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu. A. Farkov, E. A. Lebedeva, and M. A. Skopina, ‘‘Wavelet frames on Vilenkin groups and their approximation properties,’’ Int. J. Wavelets Multiresolution Inf. Process. 13, 1550036 (2015). https://doi.org/10.1142/S0219691315500368

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. A. Farkov, ‘‘Wavelet tight frames in Walsh analysis,’’ Ann. Univ. Sci. Budapest., Sect. Comp. 49, 161–177 (2019).

    MATH  Google Scholar 

  15. Yu. A. Farkov, P. Manchanda, and A. H. Siddiqi, Construction of Wavelets Through Walsh Functions Industrial and Applied Mathematics (Springer, Singapore, 2019). https://doi.org/10.1007/978-981-13-6370-2

  16. Yu. A. Farkov, ‘‘Wavelet frames related to Walsh functions,’’ Eur. J. Math. 5, 250–267 (2019). https://doi.org/10.1007/s40879-018-0220-6

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Han and Z. Shen, ‘‘Dual wavelet frames and Riesz bases in Sobolev spaces,’’ Constr. Approx. 29, 369–406 (2009). https://doi.org/10.1007/s00365-008-9027-x

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Han, ‘‘Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix,’’ J. Comput. Appl. Math. 155, 43–67 (2003). https://doi.org/10.1016/S0377-0427(02)00891-9

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Han, ‘‘On dual wavelet tight frames,’’ Appl. Comput. Harmonic Anal. 4, 380–413 (1997). https://doi.org/10.1006/acha.1997.0217

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Han, ‘‘Homogeneous wavelets and framelets with the refinable structure,’’ Sci. China Math. 60, 2173–2198 (2017). https://doi.org/10.1007/s11425-017-9145-4

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Han, ‘‘Nonhomogeneous wavelet systems in high dimensions,’’ Appl. Comput. Harmonic Anal. 32, 169–196 (2012). https://doi.org/10.1016/j.acha.2011.04.002

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Han, ‘‘Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space,’’ Appl. Comput. Harmonic Anal. 29, 330–353 (2010). https://doi.org/10.1016/j.acha.2010.01.004

    Article  MathSciNet  MATH  Google Scholar 

  23. W. C. Lang, ‘‘Orthogonal wavelets on the Cantor dyadic group,’’ SIAM J. Math. Anal. 27, 305–312 (1996). https://doi.org/10.1137/S0036141093248049

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Li and S. Yang, ‘‘Multiwavelet sampling theorem in Sobolev spaces,’’ Sci. China Math. 53, 3197–3214 (2010). https://doi.org/10.1007/s11425-010-4082-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Y.-Z. Li and J.-P. Zhang, ‘‘Extension principles for affine dual frames in reducing subspaces,’’ Appl. Comput. Harmonic Anal. 46, 177–191 (2019). https://doi.org/10.1016/j.acha.2017.11.006

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Romero, S. Alexander, S. Baid, S.Jain, and M. Papadakis, ‘‘The geometry and the analytic properties of isotropic multiresolution analysis,’’ Adv. Comput. Math. 31, 283–328 (2009). https://doi.org/10.1007/s10444-008-9111-6

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Ron and Z. Shen, ‘‘Affine systems in \(L_{2}(R^{d})\): the analysis of the analysis operator,’’ J. Funct. Anal. 148, 408–447 (1997). https://doi.org/10.1006/jfan.1996.3079

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Ron and Z. Shen, ‘‘Affine systems in \(L_{2}(R^{d})\) II: Dual systems,’’ J. Fourier Anal. Appl. 3, 617–637 (1997). https://doi.org/10.1007/BF02648888

    Article  MathSciNet  Google Scholar 

  29. F. Schipp, W. R. Wade, and P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis (Adam Hilger, Bristol, 1990).

    MATH  Google Scholar 

  30. F. A. Shah and L. Debnath, ‘‘Dyadic wavelet frames on a half-line using the Walsh–Fourier transform,’’ Integr. Transforms Special Funct. 22, 477–486 (2011). https://doi.org/10.1080/10652469.2010.520528

    Article  MathSciNet  MATH  Google Scholar 

  31. F. A. Shah, ‘‘Tight wavelet frames generated by the Walsh polynomials,’’ Int. J. Wavelets, Multiresolution Inf. Process. 11, 1350042 (2013). https://doi.org/10.1142/S0219691313500422

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Zhang, Y. Dong, and Q. Fan, ‘‘Wavelet frame based Poisson noise removal and image deblurring,’’ Signal Process. 137, 363–372 (2017). https://doi.org/10.1016/j.sigpro.2017.01.025

    Article  Google Scholar 

  33. Y. Zhang, ‘‘Walsh shift-invariant sequence and \(p\)-adic nonhomogeneous dual wavelet frames in \(L_{2}(R_{+})\),’’ Results Math. 74, 111 (2019). https://doi.org/10.1007/s00025-019-1034-7

    Article  Google Scholar 

  34. Z. Zhang and N. Saito, ‘‘Constructions of periodic wavelet frames using extension principles,’’ Appl. Comput. Harmonic Anal. 27, 12–23 (2009). https://doi.org/10.1016/j.acha.2008.10.003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (project no. 11961072), the Natural Science Basic Research Program of Shanxi (project no. 2020JM-547), and the Doctoral Research Project of Yan’an University (project no. YDBK2017-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.P. Nonhomogeneous Dual Wavelet Frames with the \({p}\)-Refinable Structure in \({L}^{\mathbf{2}}{({\mathbb{R}}^{+})}\). J. Contemp. Mathemat. Anal. 56, 307–317 (2021). https://doi.org/10.3103/S106836232105006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106836232105006X

Keywords:

Navigation