Skip to main content
Log in

Effect of Crystallinity of WC on Microstructure, Properties, and Application of WC-Co Cemented Carbide

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The microstructure, properties and applications of WC-Co cemented carbide prepared with WC powders with different crystallinity were compared. The results show that the crystallinity of different WC powders can be well characterized by XRD, SEM and laser particle size measurements. The hardness of the cemented carbide prepared with WC powders with a high crystallinity decreases slightly, while the fracture toughness, transverse rupture strength, crushing strength and impact toughness increase. The preparation of a raw WC material with a high-crystallinity is the basis of a high-performance cemented carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Herber, R.-P., Schubert, W.-D., and Lux, B., Hardmetals with “rounded” WC grains, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 360–364.

    Article  CAS  Google Scholar 

  2. Christensen, M., Wahnstrom, G., and Lay, S., Morphology of WC grains in WC–Co alloys: theoretical determination of grain shape, Acta Mater., 2007, vol. 55, pp. 1515–1521.

    Article  CAS  Google Scholar 

  3. Shatov, A.V., Firstov, S.A., and Shatova, I.V., The shape of WC crystals in cemented carbides, Mater. Sci. Eng., A, 1998, vol. 242, pp. 7–14.

    Article  Google Scholar 

  4. Shatov, A.V., Ponomarev, S.S., and Firstov, S.A., Fracture of WC–Ni cemented carbides with different shape of WC crystals, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 68–76.

    Article  CAS  Google Scholar 

  5. Zhu, L., Liu, K., and Li, Z., Study on the hardening and toughening mechanisms of WC–Co cemented carbides with plate-like WC grains, Rare Met. Mater. Eng., 2011, vol. 40, pp. 443–446.

    Google Scholar 

  6. Li, Z. and Zhu, L., Microstructure and properties of WC-10%Co cemented carbides with plate-like WC grains, J. Cent. South Univ., Sci. Technol., 2010, vol. 41, pp. 521–525.

    CAS  Google Scholar 

  7. Xhang, J., Effect of reduction and carbonization temperature of tungsten powder on WC phase substructure and mechanical properties of tungsten-cobalt alloy, Cem. Carbide, 1990, vol. 1, pp. 1–7.

    Google Scholar 

  8. Bondarenko, N.A., Zhukovsky, A.N., and Mechnik, V.A., Analysis of the basic theories of sintering of materials. 1. Sintering under isothermal and nonisothermal conditions (a review), Sverkhtverd. Mater., 2006, vol. 6. pp. 3–17.

    Google Scholar 

  9. Lisovsky, A.F., Formation of mesostructure in WC–Co cemented carbides (a review), Sci. Sintering, 2011, vol. 43, vol. 2, pp. 161–173.

  10. Lisovsky, A.F., On the formation of a refractory skeleton in composite materials. A review, J. Superhard Mater., 2013, vol. 35, vol. 2, pp. 65–76.

  11. Lisovsky, A.F. and Bondarenko, N.A., The role of interphase and contact surfaces in the formations of structures and properties of diamond-(WC-Co) composites. A review, J. Superhard Mater., 2014, vol. 36, vol. 3, pp. 145–155.

  12. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond-containing composites used in drilling and stone-working tools (A review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

  13. Bondarenko, N.A., Novikov, N.V., Mechnik, V.A., et al., Structural peculiarities of highly wear-resistant superhard composites of the diamond–WC–6Co carbide system, Sverkhtverd. Mater., 2004, vol. 6, pp. 3–15.

    Google Scholar 

  14. Novikov, N.V., Bondarenko, N.A., Zhukovskii, A.N., et al., The effect of diffusion and chemical reactions on the structure and properties of drill bit inserts. 1. Kinetic description of systems Cdiamond-VK6 and Cdiamond-(VK6-CrB2-W2B5), Fiz. Mezomekh., 2005, vol. 8, vol. 2, pp. 99–106.

    Google Scholar 

  15. Bondarenko, N.A. and Mechnik, V.A., The influence of transition area diamond-matrix on wear resistance and operation properties of drilling tool produced by ISM, SOCAR Proc., 2011, vol. 2, pp. 18–24.

  16. Bondarenko, N.A. and Mechnik, V.A., Drilling oil and gas wells by ISM diamond tools, SOCAR Proc., 2011, vol. 3, pp. 6–12.

  17. Aleksandrov, V.A., Alekseenko, N.A., and Mechnik, V.A., Study of force and energy parameters in cutting granite with diamond disc saws, Sverkhtverd. Mater., 1984, no. 6, pp. 46–52.

  18. Dutka, V.A., Kolodnitskii, V.M., Zabolotnyi, S.D., et al., Simulation of the temperature level in rock destruction elements of drilling bits, Sverkhtverd. Mater., 2004, vol. 2, pp. 66–73.

    Google Scholar 

  19. Dutka, V.A., Kolodnitskii, V.M., Mel’nichuk, O.V., Zabolotnyi, S.D. et al., Mathematical model for thermal processes occurring in the interaction between rock destruction elements of drilling bits and rock mass, Sverkhtverd. Mater., 2004, vol. 2, pp. 66–73.

    Google Scholar 

  20. Zhukovsky, A.N., Maystrenko, A.L., Mechnik, V.A., et al., Stress-strain state of the bond in the neighborhood of the diamond grain that is under the actions of the normal and tangent components of the load. Part 1. Model, J. Frict. Wear, 2002, vol. 23, no. 2, pp. 146–153.

    Google Scholar 

  21. Zhukovsky, A.N., Maystrenko, A.L., Mechnik, V.A., et al., Stress-strain state of the bond in the neighborhood of the diamond grain that is under the actions of the normal and tangent components of the load. Part 2. Analysis, J. Frict. Wear, 2002, vol. 23, no. 4, pp. 393–396.

    Google Scholar 

  22. Sveshnikov, I.A. and Kolodnitskii, V.N., Optimization of the hard alloy cutter arrangement in the drilling bit body, Sverkhtverd. Mater., 2006, vol. 4, pp. 70–75.

    Google Scholar 

  23. Mechnik, V.A., Bondarenko, N.A., Dub, S.N., Kolodnitskyi, V.M., et al., A study of microstructure of Fe-Cu-Ni-Sn and Fe-Cu-Ni-Sn-VN metal matrix for diamond containing composites, Mater. Charact., 2018, vol. 146, pp. 209–216.

    Article  CAS  Google Scholar 

  24. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., et al., Physico-mechanical and tribological properties of Fe-Cu-Ni-Sn and Fe-Cu-Ni-Sn-VN nanocomposites obtained by powder metallurgy methods, Tribol. Ind., 2019, Vol. 41, no. 2, pp. 188–198.

    Article  Google Scholar 

  25. GB 3851-83: Hard Alloy Bending Strength Measuring Method, Beijing: China Stand. Press, 1983, pp. 189–194.

  26. Roebuck, B., Measuring WC grain size distribution, Metal Powder Rep., 1999, vol. 54, pp. 20–24.

    Article  Google Scholar 

  27. Nie, H., Wu, C., Zeng, Q., et al., CN Patent 201210286816.6, 2012.

  28. Wu, C., Nie, H., Zeng, Q., et al., Microstructure and mechanical properties of extra coarse grained cemented carbides, Mater. Sci. Eng. Powder Metall., 2013, vol. 18, pp. 198–204.

    Google Scholar 

  29. Ely, D.R., Edwin García, R., and Thommes, M., Ostwald–Freundlich diffusion-limited dissolution kinetics of nanoparticles, Powder Technol., 2014, vol. 257, pp. 120–123.

    Article  CAS  Google Scholar 

  30. Nie, H., Zeng, Q., Zheng, J., et al., The preparation, preparation mechanism and properties of extra coarse-grained WC–Co hardmetals, Met. Powder Rep., 2017, vol. 72, pp. 188–194.

    Article  Google Scholar 

  31. Wu, Y.F., Study on mechanism of phase transformation in binder phase, Cem. Carbide, 2004, vol. 21, pp. 65–69.

    Google Scholar 

  32. Mingard, K.P., Roebuck, B., Bennett, E.G., et al., Comparison of EBSD and conventional methods of grain size measurement of hardmetals, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 213–223.

    Article  CAS  Google Scholar 

  33. Mingard, K.P., Roebuck, B., Marshall, J., et al., Some aspects of the structure of cobalt and nickel binder phases in hardmetals, Acta Mater., 2011, vol. 59, pp. 2277–2290.

    Article  CAS  Google Scholar 

  34. Xie, C., Zhou, H., and Yu, P., Study on shear mechanism and microstructure of cobalt binder phase, Cem. Carbide, 2013, vol. 30, pp. 242–248.

    CAS  Google Scholar 

  35. Beste, U., Hartzell, T., Engqvist, H., et al., Surface damage on cemented carbide rock-drill buttons, Wear, 2001, vol. 249, pp. 324–329.

    Article  CAS  Google Scholar 

  36. Liang, D.B., US Patent 6 197 084, 2001.

  37. Kindermann, P., Schlund, P., Sockel, H.G., et al., High-temperature fatigue of cemented carbides under cyclic loads, Int. J. Refract. Met. Hard Mater., 1999, vol. 17, pp. 55–68.

    Article  CAS  Google Scholar 

  38. Zhang, L., Wang, Y., Yu, X., et al., Effect of particle size and morphology of tungsten carbide powder on grain size, grain morphology and properties of cemented carbide, China Tungsten Ind., 2008, vol. 23, pp. 23–26.

    CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support of the funding for (Science and Technology Major Project of Fujian) under grant (2017HZ0001-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinqiang Dai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhongnan Xiang, Li, Z., Nie, H. et al. Effect of Crystallinity of WC on Microstructure, Properties, and Application of WC-Co Cemented Carbide. J. Superhard Mater. 43, 21–30 (2021). https://doi.org/10.3103/S106345762101007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345762101007X

Keywords:

Navigation