Skip to main content
Log in

Structural, Electronic, Mechanical, and Optical Properties of LaIn3 under Pressure: A First Principle Investigation

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The structural, electronic, mechanical and optical properties of LaIn3 under pressure have been systemically investigated using the first-principles calculations based on density functional theory (DFT). Structural calculations show that the cubic LaIn3 is no structural phase transition in the pressure range of 0–30 GPa. From the calculated electronic band structures and density of states (DOS), it is found that the LaIn3 is metallic character and the bands which cross EF originate primarily from La-d states, with some contribution from In-p states. The electrical conductivity and metal properties are gradually decreasing with increasing pressure, and the electron transition becomes more difficult. The calculated elastic properties indicate that LaIn3 is mechanical stability and possess the superior mechanical properties in the considered pressure ranges. Moreover, a comparison of the two elastic constants C11 and C44 indicates that the LaIn3 is more resistant to the unidirectional compression than to the shear deformation, and the values of Poisson’s ratio ν and B/G demonstrate that LaIn3 is keep ductile behavior under pressure up to 30 GPa. In addition, the elastic anisotropy of LaIn3 under pressure is also examined. Finally, the optical properties and Debye temperature of the cubic LaIn3 under pressure are also predicted analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Iizuka, T., Mizuno, T., Min, B.H., Kwon, Y.S., and Kimura, S.I., Existence of heavy fermions in the antiferromagnetic phase of CeIn3, J. Phys. Soc. Jpn., 2012, vol. 81, art. ID 043703.

    Article  CAS  Google Scholar 

  2. Lethuillier, P., Pierre, J., Knorr, K., and Drexel, W., Crystal fields and magnetic properties of NdSn3, NdPb3, and Ndin3, J. Phys., 1975, vol. 36, pp. 329–333.

    Article  CAS  Google Scholar 

  3. Asadabadi, S.J., Cottenier, S., Akbarzadeh, H., Saki, R., and Rots, M., Valency of rare earths in RIn3 and RSn3: ab initio analysis of electric-field gradients, Phys. Rev. B, 2002, vol. 66, p. 195103.

    Article  CAS  Google Scholar 

  4. Aoki, D., Katayama, Y., Nojiri, S., Settai, R., Inada, Y., Sugiyama, K., Ōnuki, Y., Harima, H., and Kletowski, Z., Fermi surfaces of RPb3, Phys. B (Amsterdam), 1999, vols. 259–261, pp. 1083–1084.

    Article  Google Scholar 

  5. Toxen, A.M. and Gambino, R.J., Evidence for a localized magnetic moment in lanthanum intermetallic compounds, Phys. Lett. A, 1968, vol. 28, no. 3, pp. 214–215.

    Article  CAS  Google Scholar 

  6. Havinga, E.E., W-like dependence of critical temperature on number of valence electrons in non-transition metal Cu3Au-type alloys, Phys. Lett. A, 1968, vol. 28, pp. 350–351.

    Article  CAS  Google Scholar 

  7. Matthias, B.T., Empirical relation between superconductivity and the number of valence electrons per atom, Phys. Rev., 1955, vol. 97, p. 74.

    Article  CAS  Google Scholar 

  8. Koelling, D.D., The Fermi surface of CeSn3 and LaSn3, Solid State Commun., 1982, vol. 43, p. 247.

    Article  CAS  Google Scholar 

  9. Gray, D.M. and Meisel, L.V., Electron energy levels in LaSn3. I. A nonrelativistic modified orthogonalized-plane—wave calculation, Phys. Rev. B, 1972, vol. 5, p. 1299.

    Article  Google Scholar 

  10. Hackenbracht, D. and Kübler, J., Cohesive and superconducting properties of La–In compounds from electronic-structure calculations, Z. Phys. B: Condens. Matter, 1979, vol. 35, pp. 27–33.

    Article  CAS  Google Scholar 

  11. Bucher, E., Andres, E., Maita, J.P., and Hul, G.W., Jr., Superconductors with magnetic impurities in a singlet ground state, Helv. Phys. Acta, 1968, vol. 41, p. 723.

    CAS  Google Scholar 

  12. Abraham, J.A., Pagare, G., Chouhan, S.S., and Sanyal, S.P., High pressure structural, elastic, mechanical and thermal behavior of LaX3 (X = In, Sn, Tl and Pb) compounds: a FP-LAPW study, Comput. Mater. Sci., 2013, vol. 8, p. 52.

    Google Scholar 

  13. Umlauf, E., Schmid, W., Bred, C.D., Steglich, F., and Loewenhaupt, M., Low temperature properties of (La, Nd)Sn3 alloys, Z. Phys. B: Condens. Matter, 1979, vol. 34, p. 65.

    Article  CAS  Google Scholar 

  14. Canepa, F., Costa, G.A., and Olcese, G.L., Thermodynamics and magnetic properties of LaPb3 and CePb3, Solid State Commun., 1983, vol. 45, p. 725.

    Article  CAS  Google Scholar 

  15. Tang, S.-P., Zhang, K.-M., and Xie, X.-D., The electronic structures of LaSn3 and LaIn3, J. Phys.: Condens. Matter, 1989, vol. 1, p. 2677.

    CAS  Google Scholar 

  16. Ram, S., Kanchana, V., Svane, A., Dugdale, S.B., and Christensen, N.E., Fermi surface properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure, J. Phys.: Condens. Matter, 2013, vol. 25, art. ID 155501.

  17. Kletowski, Z., Fabrowski, R., Slawiński, P., and Henkie, Z., Resistance of some REMe3 compounds, RE = La and Lu, Me = Sn, Pb, In, and Ga, J. Magn. Magn. Mater., 1997, vol. 166, pp. 361–364.

    Article  CAS  Google Scholar 

  18. Segall, M.D., Lindan, P.J., Probert, M.A., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter., 2002, vol. 14, p. 2717.

    CAS  Google Scholar 

  19. Milman, V., Winkler, B., White, J.A., Pickard, C.J., Payne, M.C., Akhmatskaya, E.V., and Nobes, R.H., Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study, Int. J. Quant. Chem., 2000, vol. 77, no. 5, pp. 895–910.

    Article  CAS  Google Scholar 

  20. Leibfried, G. and Ludwig, W., Theory of anharmonic effects in crystals, Solid State Phys., 1961, vol. 12, pp. 275–444.

    Article  CAS  Google Scholar 

  21. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X.L., and Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 2008, vol. 100, p. 136406.

    Article  PubMed  CAS  Google Scholar 

  22. Monkhorst, H.J. and Pack, J.D., Special points for Brillouin-zone integrations, Phys. Rev. B, 1976, vol. 13, p. 5188.

    Article  Google Scholar 

  23. Anderson, O.L., A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids, 1963, vol. 24, pp. 909–917.

    Article  CAS  Google Scholar 

  24. Birch, F., Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, J. Geophys. Res.: Solid Earth, 1978, vol. 83, pp. 1257–1268.

    Article  CAS  Google Scholar 

  25. Havinga, E.E., Damsma, H., and van Maaren, M.H., Oscillatory dependence of superconductive critical temperature on number of valence electrons in Cu3Au-type alloys, J. Phys. Chem. Solids, 1970, vol. 31, pp. 2653–2662.

    Article  CAS  Google Scholar 

  26. Szeleszczuk, Ł., Pisklak, D.M., and Zielińska-Pisklak, M., Can we predict the structure and stability of molecular crystals under increased pressure? First-principles study of glycine phase transitions, J. Comput. Chem., 2018, vol. 39, pp. 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  27. Krbal, M., Kolobov, A.V., Fons, P., Haines, J., Pradel, A., Ribes, M., Piarristeguy, A.A., Levelut, C., LeParc, R., Agafonov, V., Hanfland, M., and Tominaga, J., Pressure-induced structural transitions in phase-change materials based on Ge-free Sb-Te alloys, Phys. Rev. B, 2011, vol. 83, art. ID 024105.

    Article  CAS  Google Scholar 

  28. Abraham, J.A., Pagare, G., Chouhan, S.S., and Sanyal, S.P., Structural, electronic and elastic properties of LaX3 (X = In, Sn and Tl) compounds: a FP-LAPW study, AIP Conf. Proc., 2013, vol. 1536, pp. 567–568.

    Article  CAS  Google Scholar 

  29. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954.

    Google Scholar 

  30. Haines, J., Léger, J.M., and Bocquillon, G., Synthesis and design of superhard materials, Annu. Rev. Mater. Res., 2001, vol. 31, p. 1.

    Article  CAS  Google Scholar 

  31. Duan, Y.H., Sun, Y., Peng, M.J., and Zhou, S.G., Anisotropic elastic properties of the Ca–Pb compounds, J. Alloys Compd., 2014, vol. 595, pp. 14–21.

    Article  CAS  Google Scholar 

  32. Pugh, S.F., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh Dublin Philos. Mag. J. Sci., 1954, vol. 45, pp. 823–843.

    Article  CAS  Google Scholar 

  33. Bannikov, V.V., Shein, I.R., and Ivanovskii, A.L., Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Status Solidi, 2007, vol. 1, pp. 89–91.

  34. Teter, D.M., Computational alchemy: the search for new superhard materials, MRS Bull., 1998, vol. 23, pp. 22–27.

    Article  CAS  Google Scholar 

  35. Anderson, O.L., A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids, 1963, vol. 24, pp. 909–917.

    Article  CAS  Google Scholar 

  36. Schreiber, E., Anderson, O.L., and Soga, N., Elastic Constants and Their Measurement, New York: McGraw-Hill, 1973.

    Google Scholar 

  37. Nasu, S., van Diepen, A.M., Neumann, H.H., and Craig, R.S., Specific heats of LaIn3, CeIn3, and PrIn3 at temperatures between 1·5 and 4·2°K, J. Phys. Chem. Solids, 1971, vol. 32, pp. 2773–2777.

    Article  CAS  Google Scholar 

  38. Lu, L.Y., Cheng, Y., Chen, X.R., and Zhu, J., Thermodynamic properties of MgO under high pressure from first-principles calculations, Phys. B (Amsterdam), 2005, vol. 370, pp. 236–242.

    Article  CAS  Google Scholar 

  39. Jing, C., Xiang-Rong, C., Wei, Z., and Jun, Z., First-principles investigations on elastic and thermodynamic properties of zinc-blende structure BeS, Chin. Phys. B, 2008, vol. 17, p. 1377.

    Article  Google Scholar 

  40. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F., Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B, 2006, vol. 73, art. ID 045 112.

    Article  CAS  Google Scholar 

  41. Jalilian, J., Safari, M., and Naderizadeh, S., Buckling effects on electronic and optical properties of BeO monolayer: first principles study, Comput. Mater. Sci., 2016, vol. 117, pp. 120–126.

    Article  CAS  Google Scholar 

  42. Sun, J., Wang, H.T., He, J., and Tian, Y., Ab initio investigations of optical properties of the high-pressure phases of ZnO, Phys. Rev. B, 2005, vol. 71, p. 125 132.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 11304211 and 11504304), the Construction Plan for Scientific research Innovation Team of Universities in Sichuan Province (project no. 12TD008), the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (grant no. 15zxfk08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yulu Wan, Cheng, C., He, X. et al. Structural, Electronic, Mechanical, and Optical Properties of LaIn3 under Pressure: A First Principle Investigation. J. Superhard Mater. 43, 31–44 (2021). https://doi.org/10.3103/S1063457621010068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621010068

Keywords:

Navigation