Skip to main content
Log in

Synergistic Anti-Cancer Potential of Phenethyl Isothiocyanate and Curcumin Induces Apoptosis and G2/M Cell Cycle Arrest in HER2-Positive Breast Cancer Cells

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

This article has been updated

Abstract

HER2 expression is associated with 30% of breast cancer patients with a poor prognosis. Though Trastuzumab is approved for HER2 targeted therapy, its use is limited because of its systemic toxicity and resistance in most patients. This study evaluated the synergistic effects of Phenethyl isothiocyanate (PEITC) and Curcumin (CUR) in HER2 overexpressing SK-BR-3, BT-474, and AU-565 breast cancer cells. The cytotoxic effect of PEITC : CUR against breast cancer cells was evaluated using an MTT assay, and the Loewe additivity model was used to evaluate the synergistic effect. Apoptosis induction and cell cycle arrest over the treatment of PEITC: CUR in breast cancer cells were examined using the flow cytometric annexin-V/Propidium iodide method. Downregulation of HER2-mediated signaling was deduced from protein expression analysis using western-blot. Our results showed that treatment of PEITC : CUR at varying levels of combinations in all three breast cancer cells extensively reduced the survival of the cells with the lowest inhibitory concentrations (IC50). Cytotoxic data revealed that the 3 : 1 ratio of PEITC : CUR was the best among several (1 : 1, 3 : 1, and 1 : 3) combinations, with the maximum cytotoxicity. PEITC : CUR (3 : 1) displayed the lowest combination index (CI) against SK-BR-3, and AU-565 cells indicated its potential synergistic effect. At twice the concentration of its IC50, the 3 : 1 combination elicited 3.5 to 4.5 fold apoptosis in HER2 overexpressing cells, approximately double the effect of the individual drugs alone. In addition, the selected combination induced the G2/M cell cycle arrest in HER2 expressing cells over the treatment. Western blot protein expression analysis revealed that the PEITC : CUR combination suppressed the HER2/PI3K/Akt signaling, eventually connected to various apoptotic biological events. Our results showed the specificity of PEITC: CUR combination in inducing apoptosis and G2/M cell cycle arrest in HER2-expressing tumor cells in-vitro and enhancing the anti-cancer effect. For a subset of breast cancer patients who overexpress HER2, this combination of PEITC and CUR could be a potential treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

  • 31 January 2024

    Modifications have been made to the Publisher’s Note.

REFERENCES

  1. Aggarwal, B.B., Kumar, A., and Bharti, A.C., et al., Anticancer potential of curcumin: Preclinical and clinical studies, Anticancer Res., 2003, vol. 23, pp. 363–398. https://doi.org/10.23122a:363-98

    CAS  PubMed  Google Scholar 

  2. Agrawal, S., Late effects of cancer treatment in breast cancer survivors, S. Asian J. Cancer, 2014, vol. 3, no. 2, pp. 112–115. https://doi.org/10.4103/2278-330X.130445

    Article  Google Scholar 

  3. Aman, N.A., Doukoure, B., Koffi, K.D., et al., HER2 overexpression and correlation with other significant clinicopathologic parameters in Ivorian breast cancer women, BMC Clin. Pathol., 2019, vol. 19, p. 1. https://doi.org/10.1186/s12907-018-0081-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boreddy, S.R. and Srivastava, S.K., Deguelin suppresses pancreatic tumor growth and metastasis by inhibiting epithelial-to-mesenchymal transition in an orthotopic model, Oncogene, 2013, vol. 32, no. 34, pp. 3980–3991. https://doi.org/10.1038/onc.2012.413

    Article  CAS  PubMed  Google Scholar 

  5. Cang, S., Ma, Y., Chiao, J.W., Liu, D., et al., Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells, Exp. Hematol. Oncol., 2014, vol. 3, pp. 5–13. https://doi.org/10.1186/2162-3619-3-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cavell, B.E., Syed Alwi, S.S., Donlevy, A.M., Proud, C.G., Packham, G., et al., Natural product-derived anti-tumor compound phenethyl isothiocyanate inhibits mTORC1 activity via TSC2, J. Nat. Prod., 2012, vol. 75, pp. 1051–1057. https://doi.org/10.1021/np300049b

    Article  CAS  PubMed  Google Scholar 

  7. Daniela, B., Cinzia, G., Francesca, D.A., Marilena, L., Sebastiano, A., et al., Natural products as promising antitumoral agents in breast cancer: mechanisms of action and molecular targets, Mini-Rev. Med. Chem., 2016, vol. 16, no. 8, pp. 596–604. https://doi.org/10.2174/1389557515666150709110959

    Article  CAS  Google Scholar 

  8. Deveraux, Q.L., Takahashi, R., Salvesen, G.S., Reed, J.C., et al., X-linked IAP is a direct inhibitor of cell-death proteases, Nature, 1997, vol. 388, pp. 300–304. https://doi.org/10.1038/40901

    Article  CAS  PubMed  Google Scholar 

  9. Dubrez, D.L., Dupoux, A., Cartier, J., et al., IAPs: More than just inhibitors of apoptosis proteins, Cell Cycle, 2008, vol. 7, pp. 1036–1046. https://doi.org/10.4161/cc.7.8.5783

    Article  Google Scholar 

  10. Fadus, M.C., Lau, C., Bikhchandani, J., Lynch, H.T., et al., Curcumin: An age-old anti-inflammatory and anti-neoplastic agent, J. Tradit. Complementary Med., 2016, vol. 7, pp. 339–346. https://doi.org/10.1016/j.jtcme.2016.08.002

    Article  Google Scholar 

  11. Gong, A., He, M., Krishna, V.D., Yin, P., Karnes, R.J., Young, C.Y., et al., Phenethyl isothiocyanate inhibits STAT3 activation in prostate cancer cells, Mol. Nutr. Food. Res., 2009, vol. 53, no. 7, pp. 878–886. https://doi.org/10.1002/mnfr.200800253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grogan, F. and Cobain, E.F., Breast cancer management in 2021: A primer for the obstetrics and gynecology, Best Pract. Res. Clin. Obstet. Gynaecol., 2022, vol. 26, no. 8, pp. 1521–1534. https://doi.org/10.1016/j.bpobgyn.2022.02.004

    Article  Google Scholar 

  13. Han, X., Deng, S., Wang, N., Liu, Y., and Yang, X., et al., Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells, Food. Nutr. Res., 2016, vol. 60, pp. 3061–3066. https://doi.org/10.3402/fnr.v60.30616

    Article  CAS  Google Scholar 

  14. Harbeck, N., Penault, L.F., Cortes, J., Michael, G., Nehmat, H., Philip, P., et al., Breast cancer, Nat. Rev. Dis. Primers, 2019, vol. 5, no. 1, p. 66. https://doi.org/10.1038/s41572-019-0111-2

    Article  PubMed  Google Scholar 

  15. Henjes, F., Bender, C., Vonder, H.S., Braun, L., Mannsperger, H.A., Schmidt, C., et al., Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs, Oncogenesis, 2012, vol. 2, pp. 1–16. https://doi.org/10.1038/oncsis.2012.16

    Article  CAS  Google Scholar 

  16. Hu, A., Huang, J.J., Zhang, J.F., et al., Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway, Oncotarget, 2017, vol. 8, no. 31, pp. 50747–50760. https://doi.org/10.18632/oncotarget.17096

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hudis, C.A., Trastuzumab mechanism of action and use in clinical practice, N. Engl. J. Med., 2007, vol. 357, no. 1, pp. 39–51. https://doi.org/10.1056/NEJMra043186

    Article  CAS  PubMed  Google Scholar 

  18. Karunagaran, D., Rashmi, R., Kumar, T.R., et al., induction of apoptosis by curcumin and its implications for cancer therapy, Curr. Cancer Drug Targets, 2005, vol. 5, no. 2, pp. 117–129. https://doi.org/10.2174/1568009053202081

    Article  CAS  PubMed  Google Scholar 

  19. Lai, H.W., Chien, S.Y., Kuo, S.J., Ling, M.T., Hui, Y.L., and Chin, W.C., The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: An in vitro and in vivo comparison study with herceptin, J. Evidence-Based Integr. Med., 2012, vol. 12, pp. 486–493. https://doi.org/10.1155/2012/486568

    Article  Google Scholar 

  20. Lederer, S., Dijkstra, T., Heskes, T., et al., Additive dose-response models: explicit formulation and the loewe additivity consistency condition, Front. Pharmacol., 2018, vol. 9, pp. 31–39. https://doi.org/10.3389/fphar.2018.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martínez, C.M., Villegas, S.N., Meraz-Rios, M.A., et al., Curcumin differentially affects cell cycle and cell death in acute and chronic myeloid leukemia cells, Oncol. Lett., 2018, vol. 15, no. 5, pp. 6777–6783. https://doi.org/10.3892/ol.2018.8112

    Article  CAS  Google Scholar 

  22. Mashati, P., Esmaeili, S., Dehghan, N., Bashash, D., Darvishi, M., Gharehbaghian, A., et al., Methanolic extract from aerial parts of artemisia annua l. induces cytotoxicity and enhances vincristine-induced anticancer effect in Pre-b acute lymphoblastic leukemia cells, Int. J. Hematol. Oncol. Stem Cell Res., 2019, vol. 13, no. 3, pp. 132–139. https://doi.org/2019-Jul-1-13(3):132-139

    PubMed  PubMed Central  Google Scholar 

  23. Meric, B.F. and Hung, M.C., Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy, Clin. Cancer Res., 2006, vol. 12, no. 21, pp. 6326–6330. https://doi.org/10.3810/hp.2012.10.997

    Article  Google Scholar 

  24. Moon, Y.J., Brazeau, D.A., Morris, M.E., et al., Dietary phenethyl isothiocyanate alters gene expression in human breast cancer cells, J. Evidence-Based Integr. Med., 2011, vol. 20, no. 1, pp. 46251–46258. https://doi.org/10.1155/2011/462525

    Article  Google Scholar 

  25. Oh, D. and Bang, Y., HER2-targeted therapies – a role beyond breast cancer, Nat. Rev. Clin. Oncol., 2020, vol. 17, pp. 33–48. https://doi.org/10.1038/s41571-019-0268-3

    Article  CAS  PubMed  Google Scholar 

  26. Ortega, M.A., Fraile, M.O., Asúnsolo, Á., Buján, J., García, H.N., Coca, S., et al., Signal transduction pathways in breast cancer: The important role of PI3K/Akt/mTOR, J. Oncol., 2020, vol. 2020, p. 9258396. https://doi.org/10.1155/2020/9258396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, J.E., Sun, Y., Lim, S.K., et al., Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers, Sci. Rep., 2017, vol. 7, p. 40569. https://doi.org/10.1038/srep40569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rowe, D.L., Ozbay, T., Regan, R.M., Rita, N., et al., Modulation of the BRCA1 protein and induction of apoptosis in triple-negative breast cancer cell lines by the polyphenolic compound curcumin, Breast Cancer: Basic Clin. Res., 2009, vol. 3, pp. 61–75. https://doi.org/10.4137/bcbcr.s3067

    Article  CAS  Google Scholar 

  29. Sarkars, R., Mukherjee, S., Roy, M., et al., Targeting heat shock proteins by phenethyl isothiocyanate results in cell-cycle arrest and apoptosis of human breast cancer cells, Nutr. Cancer, 2013, vol. 65, pp. 480–493. https://doi.org/10.1080/01635581.2013.767366

    Article  CAS  PubMed  Google Scholar 

  30. Shao, Z.M., Shen, Z.Z., Liu, C.H., Maryam, R., Vay, L.G., David, H., et al., Curcumin exerts multiple suppressive effects on human breast carcinoma cells, Int. J. Cancer, 2002, vol. 98, pp. 234–240. https://doi.org/10.1002/ijc.10183

    Article  CAS  PubMed  Google Scholar 

  31. Shishodia, S., Sethi, G., Aggarwal, B.B., et al., Curcumin: getting back to the roots, Ann. N. Y. Acad. Sci., 2005, vol. 1056, pp. 206–217. https://doi.org/10.1196/annals.1352.010

    Article  CAS  PubMed  Google Scholar 

  32. Shoaib, S., Tufail, S., Sherwani, M.A., et al., Phenethyl isothiocyanate induces apoptosis through ROS generation and caspase-3 activation in cervical cancer cells, Front. Pharmacol., 2021, vol. 12, no. 3, pp. 673–682. https://doi.org/10.3389/fphar.2021.673103

    Article  CAS  Google Scholar 

  33. Singh, A.V., Xiao, D., Lew, K.L., Dhir, R., Singh, S.V., et al., Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo, Carcinogenesis, 2004, vol. 25, pp. 83–90. https://doi.org/10.1093/carcin/bgg178

    Article  CAS  PubMed  Google Scholar 

  34. Slamon, D.J., Clark, G.M., Wong, S.G., et al., Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science, 1987, vol. 235, no. 4785, pp. 177–182. https://doi.org/10.1126/science.3798106

    Article  CAS  PubMed  Google Scholar 

  35. Slamon, D.J., Godolphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., et al., Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer, Science, 1989, vol. 244, no. 4905, pp. 707–712. https://doi.org/10.1126/science.2470152

    Article  CAS  PubMed  Google Scholar 

  36. Subik, K., Lee, J.F., Baxter, L., Tamera, S., Dawn, C., Patti, C., et al., The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines, Breast Can., 2010, vol. 4, pp. 35–41. https://doi.org/10.1177/1178223418806626

    Article  Google Scholar 

  37. Syed Alwi, S.S., Cavell, B.E., Donlevy, A., Packham, G., et al., Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent, Cell Stress Chaperones, 2012, vol. 17, pp. 529–538. https://doi.org/10.1007/s12192-012-0329-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Upadhyaya, B., Liu, Y., and Dey, M., Phenethyl isothiocyanate exposure promotes oxidative stress and suppresses Sp1 transcription factor in cancer stem cells, Int. J. Mol. Sci., 2019, vol. 20, no. 5, pp. 1027–1034. https://doi.org/10.3390/ijms20051027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, J. and Xu, B., Targeted therapeutic options and future perspectives for HER2-positive breast cancer, Signal Transduction Targeted Ther., 2019, vol. 4, p. 34. https://doi.org/10.1038/s41392-019-0069-2

    Article  Google Scholar 

  40. Xiao, D., Zeng, Y., Choi, S., Lew, K.L., Nelson, J.B., Singh, S.V., et al., Caspase-dependent apoptosis induction by phenethyl isothiocyanate, a cruciferous vegetable-derived cancer chemopreventive agent, is mediated by Bak and Bax, Clin. Cancer Res., 2005, vol. 11, p. 2670. https://doi.org/10.1158/1078-0432.CCR-04-1545

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Y., Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action, Mutat. Res., 2004, vol. 555, pp. 173–90. https://doi.org/10.1016/j.mrfmmm.2004.04.017

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was fully supported by the UGC -RFSMS BSR FELLOWSHIP and DST-PURSE PROGRAMME, Osmania University, Hyderabad, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Appaji Dokala or Rojarani Anupalli.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any authors.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirigiripeta, S., Dokala, A. & Anupalli, R. Synergistic Anti-Cancer Potential of Phenethyl Isothiocyanate and Curcumin Induces Apoptosis and G2/M Cell Cycle Arrest in HER2-Positive Breast Cancer Cells. Cytol. Genet. 57, 611–624 (2023). https://doi.org/10.3103/S0095452723060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723060087

Keywords:

Navigation