Skip to main content
Log in

Feasibility study of a solar chimney power plant in Jordan

  • Solar Power Plants and Their Application
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

A solar chimney power plant system is theoretically designed for future erection in Jordan. Analytical analysis of the system is simulated by mathematical software. The actual values of solar irradiation in Jordan are used in the simulation to predict the power output of the solar chimney power plant. The output results of the maximum (inlet) values of velocity, pressure, and mass flow rate of air versus the chimney height variation are obtained. Furthermore, the electrical power output and the efficiency of chimney versus chimney height variation were determined. For a solar collector diameter of 40 m and a chimney diameter of 3.5 m, the maximum power output (85 kW) was obtained for a chimney height of 210 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlaich, J., Schiel, W., Friedrich, K., et al., Ubertragbarkeit der Ergebnisse von Manzanares auf grosere Anlagen, Abschlusbericht Aufwindkraftwerk, Stuttgart, 1990.

  2. Haaf, W., Friedrich, K., Mayr, G., and Schlaich, J., Int. J. Solar Energy, 1983, no. 2, pp. 3–20.

  3. Haaf, W., Int. J. Solar Energy, 1984, no. 2, pp. 141–161.

  4. Krisst, R.J.K., Alternat. Source Energy, 1983, no. 63, pp. 8–11.

  5. Kulunk, H., A Prototype Solar Convection Chimney Operated under Izmit Conditions, Proc. 7th Miami Int. Conf. on Alternative Energy Sources, Veiroglu, T.N., Ed., 1985, vol. 162.

  6. Sampayo, E.A., Solar-Wind Power System, in Spirit of Enterprise: the 1986 Rolex Awards, 1986, pp. 3–5.

  7. Mullet, L.B., Int. J. Ambient Energy, 1987, vol. 8, no. 1, pp. 35–40.

    Article  Google Scholar 

  8. Padki, M.M. and Sherif, S.A., Fluid Dynamics of Solar Chimneys, in Proc. Forum on Industrial Applications of Fluid Mechanics-1988, Morrow, T.B., Marshall, L.R., and Simpson, R.L., Eds., New York: ASME, 1998, vol. 70, pp. 43–46.

    Google Scholar 

  9. Padki, M.M. and Sherif, S.A., Solar Chimney for Medium-to Large Scale power Generation, Proc. Manila Int. Symp. on the Development and Management of Energy Resources, Manila, 1989, vol. 1, pp. 432–437.

    Google Scholar 

  10. Padki, M.M. and Sherif, S.A., Solar Chimney for Power Generation in Rural Areas, Seminar on Energy Conservation and Generation through Renewable Resources, Ranchi, 1989, pp. 91–96.

  11. Yan, M.Q., Kridli, G.T., Sherif, S.A., et al., Thermo-Fluid Analysis of Solar Chimneys, in Industrial Applications of Fluid Dynamics, New York: ASME, 1991, vol. 132, pp. 125–130.

    Google Scholar 

  12. Padki, M.M. and Sherif, S.A., A Mathematical Model for Solar Chimneys, Proc. Int. Renewable Energy Conf., 1992, vol. 1, pp. 289–294.

    Google Scholar 

  13. Kreetz, H., Theoretische Untersuchungen und Auslegung eines tempor, Diplomarbeit TU Berlin, Berlin, 1997.

  14. Pasumarthi, N. and Sherif, S.A., Int. J. Energy Res., 1998, no. 22, pp. 277–288.

  15. Pasumarthi, N. and Sherif, S.A., Int. J. Energy Res., 1998, no. 22, pp. 443–461.

  16. Padki, M.M. and Sherif, S.A., Int. J. Energy Res., 1999, no. 23, pp. 345–349.

  17. Bernardes, M.A., Dos, S., Valle, R.M., and Cortez, M.F., Int. J. Therm. Sci., 1999, no. 38, pp. 42–50.

  18. Lodhi, M.A.K., Energy Convers. Manag., 1999, no. 40, pp. 407–421.

  19. Backstrom, T.W. and Gannon, A.J., J. Solar Energy Eng., 2000, no. 122, pp. 138–145.

  20. Gannon, A.J. and Backstrom, T.W., J. Solar Energy Eng., 2000, no. 122, pp. 133–137.

  21. Kroger, D.G. and Buys, J.D., Performance Evaluation of a Solar Chimney Power Plant, Proc. Solar World Congr. ISES 2001, Adelaide, 2001.

  22. Gannon, A.J. and Von Backstrom, T.W., Controlling and Maximizing Solar Chimney Power Output, Proc. 1st Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics, Skukuza, 2002.

  23. Gannon, A.J. and Von Backstrom, T.W., J. Solar Energy Eng., 2003, no. 125, pp. 101–106.

  24. Bernardes, M.A., Dos, S., Voss, A., and Weinrebe, G., Solar Energy, 2003, no. 75, pp. 511–524.

  25. Pastohr, H., Kornadt, O., and Gurlebeck, K., Int. J. Energy Res., 2004, no. 28, pp. 495–510.

  26. Pretorius, J.P., Kroger, D.G., Buys, J.D., and Von Backstrom, T.W., Solar Tower Power Plant Performance Characteristics, Proc. ISES EuroSun 2004 Int. Sonnenforum, Freiburg, 2004, vol. 1, pp. 870–879.

    Google Scholar 

  27. Schlaich, J., Bergermann, R., Schiel, W., and Weinrebe, G., J. Solar Energy Eng., 2005, no. 127, pp. 117–124.

  28. Bilgen, E. and Rheault, J., Solar Energy, 2006, no. 79, pp. 449–458.

  29. Pretorius, J.P. and Kroger, D.G., J. Solar Energy, 2006, vol. 128, no. 3, pp. 302–311.

    Article  Google Scholar 

  30. Ming, T.Z., Liu, W., and Xu, G.L., Int. J. Energy Res., 2006, no. 30, pp. 861–873.

  31. Ming, T.Z., Liu, W., Pan, Y., and Xu, G.L., Energy Convers. Manag., 2008, no. 49, pp. 2872–2879.

  32. Zhou, X.P., Yang, J.K., Xiao, B., and Hou, G.X., Appl. Therm. Eng., 2007, no. 27, pp. 2044–2050.

  33. Ketlogetswe, C., Fiszdon, J.K., and Seabe, O.O., Renew. Sust. Energy Rev., 2008, no. 12, pp. 2005–2012.

  34. Ferreira, A.G., Maia, C.B., Cortez, M.F.B., and Valle, R.M., Solar Energy, 2008, no. 82, pp. 198–205.

  35. Koonsrisuk, A. and Chitsomboon, T., Solar Energy, 2007, no. 81, pp. 1439–1446.

  36. Zhou, X.P., Yang, J.K., Wang, J.B., et al., Heat Transfer Eng., 2009, no. 30, pp. 670–676.

  37. Bernardes, M.A., Dos, S., and von Backstrom, T.W., Solar Energy, 2010, no. 84, pp. 277–288.

  38. Koonsrisuk, A., Lorente, S., and Bejan, A., Int. J. Heat Mass Transfer, 2010, no. 53, pp. 327–333.

  39. Sangi, R., Amidpour, M., and Hosseinizadeh, B., Solar Energy, 2011, no. 85, pp. 829–838.

  40. Dai, Y.J., Huang, H.B., and Wang, N.R.Z., Renew. Energy, 2003, no. 28, pp. 1295–1304.

  41. Frederick, N.O. and Reccab, M.O.J., Fuel, 2006, no. 85, pp. 2561–2566.

  42. Nizetic, S., Ninic, N., and Klarin, B., Energy, 2008, no. 33, pp. 1680–1690.

  43. Larbi, S., Bouhdjar, A., and Chergui, T., Renew. Sust. Energy Rev., 2010, no. 14, pp. 470–477.

  44. Zhou, X.P., Wang, F., Fan, J., and Ochieng, R.M., Renew. Sust. Energy Rev., 2010, no. 14, pp. 2249–2255.

  45. Renewable Energy in Jordan Current Realities and Future Opportunities, The Jordan Europe Business Association, June 2009, pp. 7–17.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

About this article

Cite this article

Al Alawin, A., Badran, O., Awad, A. et al. Feasibility study of a solar chimney power plant in Jordan. Appl. Sol. Energy 48, 260–265 (2012). https://doi.org/10.3103/S0003701X12040020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X12040020

Keywords

Navigation