Skip to main content
Log in

A finite element method for time fractional partial differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the finite element method for time fractional partial differential equations. The existence and uniqueness of the solutions are proved by using the Lax-Milgram Lemma. A time stepping method is introduced based on a quadrature formula approach. The fully discrete scheme is considered by using a finite element method and optimal convergence error estimates are obtained. The numerical examples at the end of the paper show that the experimental results are consistent with our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Adolfsson, M. Enelund, and S. Larsson, Adaptive discretization of integro-differential equation with a weakly singular convolution kernel. Comput. Methods Appl. Mech. Engrg. 192 (2003), 5285–5304.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Adolfsson, M. Enelund, and S. Larsson, Adaptive discretization of fractional order viscoelasticity using sparse time history. Comput. Methods Appl. Mech. Engrg. 193 (2004), 4567–4590.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis, and S. Leibler, Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77 (1996), 4470.

    Article  Google Scholar 

  4. E. Barkai, R. Metzler, and J. Klafter, Form continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61 (2000), 132–138.

    Google Scholar 

  5. M. Caputo, The Green function of the diffusion of fluids in porous media with memory. Rend. Fis. Acc. Lincei (Ser. 9) 7 (1996), 243–250.

    Article  MATH  Google Scholar 

  6. K. Diethelm, Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal. 17 (1997), 479–493.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order. Electronic Trans. on Numerical Analysis 5 (1997), 1–6.

    MATH  MathSciNet  Google Scholar 

  8. K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Appl. Mechanics and Engineering 194 (2005), 743–773.

    Article  MATH  MathSciNet  Google Scholar 

  9. N.J. Ford and A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26 (2001), 333–346.

    Article  MATH  MathSciNet  Google Scholar 

  10. V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numerical Meth. P.D.E. 22 (2006), 558–576.

    Article  MATH  MathSciNet  Google Scholar 

  11. V.J. Ervin and J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domain in R d. Numerical. Meth. P.D.E. 23 (2007), 256–281.

    Article  MATH  MathSciNet  Google Scholar 

  12. N.J. Ford and J.A. Connolly, Comparison of numerical methods for fractional differential equations. Comm. Pure Appl. Anal. 5 (2006), 289–307.

    Article  MATH  MathSciNet  Google Scholar 

  13. N.J. Ford and J.A. Connolly, Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. J. Comput. Appl. Math. 229 (2009), 382–391.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Henry and S. Wearne, Fractional reaction-diffusion. Physica A 276 (2000), 448–455.

    Article  MathSciNet  Google Scholar 

  15. B. Henry and S. Wearne, Existence of turring instabilities in a twospecies fractional reaction-diffusion system. SIAM J. Appl. Math. 62 (2002), 870–887.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Li, Z. Zhao, and Y. Chen, Numerical approximation and error estimates of a time fractional order diffusion equation. In: Proc. of the ASME 2009 Intern. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. IDETC/CIE 2009, San Diego, California, USA.

  17. Y. Jiang and J. Ma, High-order finite element methods for timefractional partial differential equations. J. Comput. Appl. Math. 235 (2011), 3285–3290.

    Article  MATH  Google Scholar 

  18. T.A.M. Langlands and B.I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205 (2005), 719–736.

    Article  MATH  MathSciNet  Google Scholar 

  19. X.J. Li and C.J. Xu, Existence and uniqeness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8 (2010), 1016–1051.

    MathSciNet  Google Scholar 

  20. Y.M. Lin and C.J. Xu, Finite difference/spectral approximation for the time fractional diffusion equations. J. Comput. Phys. 2 (2007), 1533–1552.

    Article  MathSciNet  Google Scholar 

  21. J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Volume 1. Springer-Verlag, 1972.

  22. F. Liu, S. Shen, V. Anh and I. Turner, Analysis of a discrete nonmarkovian random walk approximation for the time fractional diffusion equation. ANZIAMJ 46 (2005), 488–504.

    MathSciNet  Google Scholar 

  23. F. Liu, V. Anh, I. Turner, and P. Zhuang, Time fractional advection dispersion equation. J. Comput. Appl. Math. 13 (2003), 233–245.

    Article  MATH  MathSciNet  Google Scholar 

  24. H.P. Müller, R. Kimmich, and J. Weis, NMR flow velocity mapping in random percolation model objects: Evidence for a power-law dependence of the volume-averaged velocity on the probe-volume radius. Phys. Rev. E 54 (1996), 5278–5285.

    Article  Google Scholar 

  25. R.R. Nigmatullin, Realization of the generalized transfer equation in a medium with fractal geometry. Physica B 133 (1986), 425–430.

    Google Scholar 

  26. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  27. J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domain in R 2. J. Comp. Appl. Math. 193 (2006), 243–268.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Scher and M. Lax, Stochastic transport in a disordered solid. Phys. Rev. B 7 (1973), 4491–4502.

    Article  MathSciNet  Google Scholar 

  29. H. Scher and E. Montroll, Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12 (1975), 2455–2477.

    Google Scholar 

  30. W.R. Schneider and W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.

    Article  MATH  MathSciNet  Google Scholar 

  31. Z.Z. Sun and X.N. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56 (2006), 193–209.

    Article  MATH  MathSciNet  Google Scholar 

  32. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin, 2007.

    Google Scholar 

  33. W. Wyss, The fractional diffusion equation. J. Math. Phys. 27 (1989), 2782–2785.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neville J. Ford.

About this article

Cite this article

Ford, N.J., Xiao, J. & Yan, Y. A finite element method for time fractional partial differential equations. fcaa 14, 454–474 (2011). https://doi.org/10.2478/s13540-011-0028-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0028-2

MSC 2010

Key Words and Phrases

Navigation