Skip to main content
Log in

Variability in inorganic and organic nitrogen uptake associated with riverine nutrient input in the Gulf of Riga, Baltic Sea

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Concentrations and rates of uptake of dissolved organic nitrogen (DON, free amino acids, and urea) and inorganic nitrogen (DIN, nitrate, and ammonium) were measured along two transects in the Gulf of Riga, a sub-basin of the Baltic Sea, during May and July 1996. Concentrations of total dissolved nitrogen (TDN) were 23±3 μg-at N 1−1 in the northern region (mouth) and 41±5 μg-at N 1−1 in the southern region (head) of the Gulf. Rates of nitrogen uptake, determined with15N-labeled substrates, reflected differences in TDN concentration between the regions. In May, uptake of DIN+DON measured 0.17 and 0.43 μg-at N 1−1 h−1 in the northern and southern parts of the Gulf, respectively. In July, DIN+DON uptake measured 0.38 and 0.68 μg-at N 1−1 h−1 in the north and south, respectively. Most of the variability in total nitrogen flux between the northern and southern regions was due to heterogeneity of DON utilization. Uptake of urea and dissolved free amino acid were up to 6 and 3 times greater in the south compared to the north. As evidenced by size-fractionation, plankton size structure appeared to play a role in the uptake of DON. The community in the southern part was largely composed of cells <5 μm, while up to 67% of the community in the northern part was composed of cells >5 μm. Our results indicate that DON was a major source of nitrogen to phytoplankton, particularly in the southern part of the Gulf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alumihare, L. I., D. J. Repeta, andR. F. Chen. 1997. A major biopolymeric component to dissolved organic carbon in surface sea water.Nature 387:166–169.

    Article  Google Scholar 

  • Amon, R. M. W. andR. Benner. 1994. Rapid cycling of high-molecular weight dissolved organic matter in the ocean.Nature 369:549–551.

    Article  CAS  Google Scholar 

  • Amon, R. M. W. andR. Benner. 1996. Bacterial utilization of different size classes of dissolved organic matter.Limnology and Oceanography 41:41–51.

    Article  CAS  Google Scholar 

  • Andrushaitis, G., A. Andrushaitis, Y. Bitenieks, S. Priede, and E. Lenshs. 1992. Organic Carbon Balance of the Gulf of Riga. Proceedings of the 17th Conference of the Baltic Oceanographers, Norköping, Sweden.

  • Andrushaitis, A., Z. Seisuma, M. Legzdina, andE. Lenshs. 1995. River load of eutrophying substances and heavy metals into the Gulf of Riga, p. 32–42.In E. Ojaveer (ed.), River Load of Eutrophying Substances and Heavy Metals into the Gulf of Riga. Estonian Academy Publishers, Tallin, Estonia.

    Google Scholar 

  • Antia, N. J., B. R. Berland, andD. J. Bonin. 1980. Proposal for an abridged nitrogen turnover cycle in certain marine planktonic systems involving hypoxanthine-guanine excretion by ciliates and their reutilization by phytoplankton.Marine Ecology Progress Series 2:97–103.

    Article  CAS  Google Scholar 

  • Antia, N. J., P. J. Harrison, andL. Oliveira. 1991. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology.Phycologia 30:1–89.

    Google Scholar 

  • Balode, M. andI. Purina. 1996. Harmful phytoplankton in the Gulf of Riga (the Baltic Sea), p. 69–72.In T. Yasumoto, Y. Oshima, and Y. Fukuyo (eds.), Harmful Phytoplankton in the Gulf of Riga (the Baltic Sea). Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of United Nations Educational, Scientific and Cultural Organization, Paris.

    Google Scholar 

  • Balode, M., I. Purina, C. Béchemin, andS. Y. Maestrini. 1998. Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea.Journal of Plankton Research 20:2251–2272.

    Article  CAS  Google Scholar 

  • Berg, G. M., P. M. Glibert, M. W. Lomas, andM. Burford. 1997. Organic nitrogen uptake and growth by the chrysophyteAureococcus anophagefferens during a brown tide event.Marine Biology 129:377–387.

    Article  CAS  Google Scholar 

  • Berman, T. 1997. Dissolved organic nitrogen utilization by anAphanizomenon bloom in Lake Kinneret.Journal of Plankton Research 19:577–586.

    Article  Google Scholar 

  • Berman, T., C. Bechemin, andS. Y. Maestrini. 1999. Release of ammonium and urea from dissolved organic nitrogen in aquatic ecosystems.Aquatic Microbial Ecology 16:295–302.

    Article  Google Scholar 

  • Berman, T. andS. Chava. 1999. Algal growth on organic compounds as nitrogen sources.Journal of Plankton Research 21:1423–1437.

    Article  CAS  Google Scholar 

  • Bradley, R. L. andK. J. Reddy. 1997. Cloning, sequencing, and regulation of the global nitrogen regulator gene ntcA in the unicellular diazotrophic cyanobacteriumCyanothece sp. strain BH68K.Journal of Bacteriology 179:4407–4410.

    CAS  Google Scholar 

  • Bronk, D. A. andP. M. Glibert. 1991. A15N tracer method for the measurement of dissolved organic nitrogen release by phytoplankton.Marine Ecology Progress Series 77:171–182.

    Article  CAS  Google Scholar 

  • Bronk, D. A., P. M. Glibert, andB. Ward. 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production.Science 256:1843–1846.

    Article  Google Scholar 

  • Butler, E. L., S. Knox, andM. I. Liddicoat. 1979. The relationship between inorganic and organic nutrients in sea water.Journal of the Marine Biological Association UK 59:239–250.

    Article  CAS  Google Scholar 

  • Cho, B. C. andF. Azam. 1995. Urea decomposition by bacteria in the Southern California Bight and its implications for the mesopelagic nitrogen cycle.Marine Ecology Progress Series 122:21–26.

    Article  CAS  Google Scholar 

  • Cho, B. C., M. G. Park, J. H. Shim, andF. Azam. 1996. Significance of bacteria in urea dynamics in coastal surface waters.Marine Ecology Progress Series 142:19–26.

    Article  Google Scholar 

  • Collos, Y., E. A. S. Linley, M. G. Frikha, andB. Ravail. 1992. Nitrate uptake kinetics by two marine diatoms using the radioactive tracer13N.Journal of Experimental Marine Biology and Ecology 163:251–260.

    Article  CAS  Google Scholar 

  • Collos, Y., A. Vaquer, B. Bibent, G. Slawyk, N. Garcia, andP. Souchu. 1997. Variability in nitrate uptake kinetics of phytoplankton communities in a Mediterranean coastal lagoon.Estuarine, Coastal and Shelf Science 44:369–375.

    Article  CAS  Google Scholar 

  • Cornell, S., A. Rendell, andT. Jickells. 1995. Atmospheric inputs of dissolved organic nitrogen to the oceans.Nature 376:243–246.

    Article  CAS  Google Scholar 

  • Correll, D. L. andD. Ford. 1982. Comparison of precipitation and land run off as sources of estuarine nitrogen.Estuarine, Coastal and Shelf Science 15:45–56.

    Article  CAS  Google Scholar 

  • Cottrell, M. T. andD. L. Kirchman. 2000. Natural assemblages of marine proteobacteria and members of theCytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter.Applied and Environmental Microbiology 66:1692–1697.

    Article  CAS  Google Scholar 

  • Dugdale, R. C. andJ. J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity.Limnology and Oceanography 12:196–206.

    Article  CAS  Google Scholar 

  • Flynn, K. J. andI. Butler. 1986. Nitrogen sources for the growth of marine microalgae: Role of dissolved free amino acids.Marine Ecology Progress Series 34:281–304.

    Article  CAS  Google Scholar 

  • Glibert, P. M. andD. G. Capone. 1993. Mineralization and assimilation in aquatic, sediment, and wetland systems, p. 243–271.In R. Knowles and T. H. Blackburn (eds.), Nitrogen Isotope Techniques. Academic Press, San Diego, California.

    Google Scholar 

  • Glibert, P. M., C. Garside, J. A. Fuhrman, andM. R. Roman. 1991. Time-dependent coupling of inorganic and organic nitrogen uptake and regeneration in the plume of the Chesapeake Bay estuary and its regulation by large heterotrophs.Limnology and Oceanography 36:895–909.

    Article  Google Scholar 

  • Glibert, P. M., J. C. Goldman, andE. J. Carpenter. 1982. Seasonal variations in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA.Marine Biology 70:237–249.

    Article  Google Scholar 

  • Grasshoff, K., M. Ehrhardt, andK. Kremling. 1983. Methods of Seawater Analysis. Wiley-VCH Verlag, Weinheim, Germany.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley, andS. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy.Applied and Environmental Microbiology 33:1225–1228.

    CAS  Google Scholar 

  • Hoch, M. P. andD. L. Kirchman. 1995. Ammonium uptake by heterotrophic bacteria in the Delaware estuary and adjacent coastal waters.Limnology and Oceanography 40:886–897.

    Article  CAS  Google Scholar 

  • Jackson, G. A. andP. M. Williams. 1985. Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling.Deep-Sea Research 32:223–235.

    Article  CAS  Google Scholar 

  • Jørgensen, N. O. G., N. Kroer, R. B. Coffin, X.-H. Yang, andC. Lee. 1993. Dissolved free amino acids, combined amino acids, and DNA as sources of carbon and nitrogen to marine bacteria.Marine Ecology Progress Series 98:135–148.

    Article  Google Scholar 

  • Jørgensen, N. O. G., L. J. Tranvik, andG. M. Berg. 1999. Occurrence and bacterial cycling of dissolved nitrogen in the Gulf of Riga, the Baltic Sea.Marine Ecology Progress Series 191:1–18.

    Article  Google Scholar 

  • Kahru, M., U. Horstmann, andO. Rud. 1994. Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuation or ecosystem change?Oceanology 23:469–472.

    Google Scholar 

  • Kieber, D. J., J. McDaniel, andK. Mopper. 1989. Photochemical source of biological substrates in sea water: Implications for carbon cycling.Nature 341:637–639.

    Article  CAS  Google Scholar 

  • Kristiansen, S. 1983. Urea as an important source of nitrogen in the Oslofjord.Marine Biology 74:17–24.

    Article  CAS  Google Scholar 

  • Landry, M. R., R. T. Barber, R. R. Bidigare, F. Chai, K. H. Coale, H. G. Dam, M. R. Lewis, S. T. Lindley, J. J. McCarthy, M. R. Roman, D. K. Stoecker, P. G. Verity, andJ. R. White. 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis.Limnology and Oceanography 42:405–418.

    Article  CAS  Google Scholar 

  • LaRoche, J., R. Nuzzi, R. Waters, K. Wyman, P. G. Falkowski, andW. R. Wallace. 1997. Brown tide blooms in Long Island's coastal waters linked to interannual variability in groundwater flow.Global Change Biology 3:397–410.

    Article  Google Scholar 

  • Laznik, M., P. Stålnacke, H. B. Grimvall, andR. Wittgren. 1999. Riverine input of nutrients to the Gulf of Riga—Temporal and biomass of naturally derived marine bacterioplankton.Applied and Environmental Microbiology 53:1298–1303.

    Google Scholar 

  • Lindroth, P. andK. Mopper. 1979. High performance liquid chromatographic determinations of subpicomole amounts of amino acids by precolumn fluorescence derivatization witho-phthaldialdehyde.Analytical Chemistry 51:1667–1674.

    Article  CAS  Google Scholar 

  • Lomstein, B. A., T. H. Blackburn, andK. Henriksen. 1989. Aspects of nitrogen and carbon cycling in the northern Bering Shelf sediment. I. The significance of urea turnover in the mineralization of NH4+.Marine Ecology Progress Series 57:237–247.

    Article  CAS  Google Scholar 

  • Luque, I., E. Flores, andA. Herrero. 1994. Molecular mechanism for the operation of nitrogen control in cyanobacteria.EMBO Journal 13:2862–2869.

    CAS  Google Scholar 

  • Maestrini, S. Y., M. Balode, C. Béchemin, andI. Purina. 1999. Nitrogenous organic substances as potential nitrogen sources, for summer phytoplankton in the Gulf of Riga, eastern Baltic Sea.Plankton Biology and Ecology 46:8–17.

    Google Scholar 

  • Maestrini, S. Y., M. Balode, C. Béchemin, I. Purina, andC. Vérité. 1997. Nutrients limiting the algal growth potential (AGP) in the Gulf of Riga, eastern Baltic Sea, in spring and early summer 1996.La Mer 35:49–68.

    CAS  Google Scholar 

  • Malone, T. C., H. L. Crocker, S. E. Pike, andB. W. Wendler. 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary.Marine Ecology Progress Series 48:235–249.

    Article  Google Scholar 

  • McCarthy, J. J. 1972. The uptake of urea by natural populations of marine phytoplankton.Limnology and Oceanography 17:738–748.

    Article  Google Scholar 

  • McCarthy, M. D., J. I. Hedges, andR. Benner. 1998. Major bacterial contribution to marine dissolved organic nitrogen.Science 281:231–234.

    Article  CAS  Google Scholar 

  • Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers.American Journal of Science 282:401–450.

    Article  CAS  Google Scholar 

  • Mitsui, A., S. Kumazawa, A. Takahashi, M. Ikemoto, S. Cao, andT. Arai. 1986. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically.Nature 323:720–722.

    Article  CAS  Google Scholar 

  • Mopper, K. andP. Lindroth. 1982. Diel and depth variation in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analyses.Limnology and Oceanography 27:336–348.

    Article  CAS  Google Scholar 

  • Mulholland, M. R., P. M. Glibert, G. M. Berg, L. Van Heukelem, S. Pantoja, andC. Lee. 1998. Extracellular amino acid oxidation by microplankton: A cross-ecosystem comparison.Aquatic Microbial Ecology 15:141–152.

    Article  Google Scholar 

  • Neilson, A. H. andT. Larsson. 1980. The utilization of organic nitrogen for growth of algae: Physiological aspects.Physiologia Plantarum 48:542–553.

    Article  CAS  Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns.Ophelia 41:199–219.

    Google Scholar 

  • Paerl, H. W. 1991. Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton.Applied and Environmental Microbiology 57:473–479.

    CAS  Google Scholar 

  • Paeri, H. W., J. Rudek, andM. A. Mallin. 1990. Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: Nutritional and trophic implications.Marine Biology 107:247–254.

    Article  Google Scholar 

  • Palenik, B. andS. E. Henderson. 1997. The use of amides and other organic nitrogen sources by the phytoplankton.Emiliania huxleyi. Limnology and Oceanography 42:1544–1551.

    Article  CAS  Google Scholar 

  • Palenik, B. andF. M. M. Morel. 1990a. Amino acid utilization by marine phytoplankton: A novel mechanism.Limnology and Oceanography 35:260–269.

    Article  CAS  Google Scholar 

  • Palenik, B. andF. M. M. Morel. 1990b. Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton.Marine Ecology Progress Series 59:195–201.

    Article  CAS  Google Scholar 

  • Pantoja, S. andC. Lee. 1994. Cell-surface oxidation of amino acids in sea water.Limnology and Oceanography 39:1718–1725.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Pedersen, H., B. A. Lomstein, andT. H. Blackburn. 1993a. Evidence for bacterial urea production in marine sediments.FEMS Microbiology Ecology 12:51–59.

    Article  CAS  Google Scholar 

  • Pedersen, H., B. A. Lomstein, M. F. Isaksen, andT. H. Blackburn. 1993b. Urea production byThiosphaera pantotropha and by anaerobic enrichment cultures from marine sediments.FEMS Microbiology Ecology 13:31–36.

    Article  CAS  Google Scholar 

  • Peierls, B. L., N. F. Caraco, M. L. Pace, andJ. J. Cole. 1991. Human influence on river nitrogen.Nature 350:386–387.

    Article  Google Scholar 

  • Price, N. M., L. F. Andersen, andF. M. M. Morel. 1991. Iron and nitrogen nutrition of equatorial Pacific plankton.Deep-Sea Research 38:1361–1378.

    Article  Google Scholar 

  • Raven, J. A. 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources.New Phytology 109:279–287.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P. andR. W. Sanders. 1997. Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication.Marine Ecology Progress Series 159:1–12.

    Article  CAS  Google Scholar 

  • Sharp, J. H. 1983. The distribution of inorganic nitrogen and dissolved and particulate organic nitrogen in the sea, p. 1–35.In E. G. Carpenter and D. G. Capone (eds.), Nitrogen in the Marine Environment. Academic Press, New York.

    Google Scholar 

  • Sörensson, F. andE. Sahlsten. 1987. Nitrogen dynamics of a cyanobacteria bloom in the Baltic Sea: New versus regenerated production.Marine Ecology Progress Series 37:277–284.

    Article  Google Scholar 

  • Stålnacke, P. 1996. Nutrient loads to the Baltic Sea. Ph.D. Dissertation, Linköping University, Linköping, Sweden.

    Google Scholar 

  • Stålnacke, P., N. Vagstad, andE. Loigu. 1999. Nutrient runoff and transfer from land and rivers to the Gulf of Riga.Hydrobiologia 410:103–108.

    Article  Google Scholar 

  • Stepanauskas, R., L. Leonardson, andL. J. Tranvik. 1999. Bioavailability of wetland-derived DON to freshwater and marine bacterioplankton.Limnology and Oceanography 44:1477–1485.

    Article  CAS  Google Scholar 

  • Tamminen, T. andA. Irmisch. 1996. Urea uptake kinetics of a midsummer planktonic community on the SW coast of Finland.Marine Ecology Progress Series 130:201–211.

    Article  CAS  Google Scholar 

  • Tamminen, T. andJ. Seppälä. 1999. Nutrient pools, transformations, ratios and limitation in the Gulf of Riga, the Baltic Sea, during four successional stages.Journal of Marine Systems 23:251–268.

    Article  Google Scholar 

  • Utermohl, H. 1958. Zur Vervollkommung der quantitativen phytoplankton methodic.International Vereinigung für Theoretische und Angewandte Limnologie 9:1–38.

    Google Scholar 

  • Vagstad, N., V. Jansons, andJ. Deelstra. 2000. Nutrient losses from agricultural areas in the Gulf of Riga.Ecological Engineering 14:435–439.

    Article  Google Scholar 

  • Vitousek, P. M., J. Aber, S. E. Bayley, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andG. D. Tilman. 1997. Human alteration of the global nitrogen cycle: Causes and consequences.Ecological Issues 1:1–15.

    Google Scholar 

  • Wassman, P. andT. Tamminen. 1999. Pelagic eutrophication and sedimentation in the Gulf of Riga: A synthesis.Journal of Marine Systems 23:251–268.

    Article  Google Scholar 

  • Wikner, J. andÅ. Hagström. 1999. Bacterioplankton intra-annual variability: Importance of hydrography and competition.Aquatic Microbial Ecology 20:245–260.

    Article  Google Scholar 

  • Wheeler, P. A. andD. L. Kirchman. 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems.Limnology and Oceanography 31:998–1009.

    Article  CAS  Google Scholar 

  • Wheeler, P. A., B. B. North, andG. C. Stevens. 1974. Amino acid uptake by marine phytoplankters.Limnology and Oceanography 19:249–259.

    Article  CAS  Google Scholar 

  • Yurkovskis, A., E. Kostrichkina, andA. Ikuniece. 1999. Seasonal succession and growth in the plankton community of the Gulf of Riga in relation to long-term nutrient dynamics.Hydrobiologia 393:83–87.

    Article  CAS  Google Scholar 

  • Yurkovskis, A., M. Mazmachs, andR. Modris. 1996. Present state and historical changes of the nutrient system in the Gotland Basin and the Gulf of Riga, Baltic Sea, p. 78–81.In O. Guelorget and O. Lefebvre (eds.), A Comparative Ecological Approach of Coastal Environments and Paralic Ecosystems. Université Montpellier II, Montpellier.

    Google Scholar 

  • Zweifel, U. L. 1999. Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga.Estuarine, Coastal and Shelf Science 48:357–362.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gry Mine Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, G.M., Glibert, P.M., Jørgensen, N.O.G. et al. Variability in inorganic and organic nitrogen uptake associated with riverine nutrient input in the Gulf of Riga, Baltic Sea. Estuaries 24, 204–214 (2001). https://doi.org/10.2307/1352945

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352945

Keywords

Navigation